TY - JOUR
T1 - Fabrication and Characterization of MWCNT-Based Bridge Devices
AU - Nanaiah, Karumbaiah Chappanda
AU - Batra, Nitin M
AU - Holguin Lerma, Jorge Alberto
AU - Da Costa, Pedro M. F. J.
AU - Younis, Mohammad I.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by funding from King Abdullah University of Science and Technology (KAUST) research grant.
PY - 2017/8/21
Y1 - 2017/8/21
N2 - Carbon nanotubes (CNTs) are one of the most actively researched structural materials due to their interesting electrical, mechanical, and chemical properties. Unlike single walled carbon nanotubes (SWCNTs), little work has been focused on multi-walled carbon nanotubes (MWCNTs) and their potential for practical devices. Here, we have fabricated bridge-shape devices integrating MWCNTs (> 50 nm in outer diameter) using three processes: optical lithography, electron beam-induced platinum deposition, and surface micromachining. Each device consists of a doubly-clamped nanotube suspended over gold electrodes on a highly conductive Si substrate. The suspended nanotubes are characterized individually using Raman spectroscopy and semiconductor parameters analysis and, overall, show, high crystallinity and low electrical resistance. The spring constants of doubly-clamped nanotubes were characterized using atomic force microscopy force-displacement measurements, with values as high as 70 N/m observed. Highly stiff MWCNTs are promising for a variety of applications, such as resonators and electrical interconnects. Through simulations, we estimate the resonance frequencies and pull-in voltages of these suspended nano-structures. The dependence of key parameters, such as the nanotube's length, Young's modulus, axial stress, and wall thickness is also discussed.
AB - Carbon nanotubes (CNTs) are one of the most actively researched structural materials due to their interesting electrical, mechanical, and chemical properties. Unlike single walled carbon nanotubes (SWCNTs), little work has been focused on multi-walled carbon nanotubes (MWCNTs) and their potential for practical devices. Here, we have fabricated bridge-shape devices integrating MWCNTs (> 50 nm in outer diameter) using three processes: optical lithography, electron beam-induced platinum deposition, and surface micromachining. Each device consists of a doubly-clamped nanotube suspended over gold electrodes on a highly conductive Si substrate. The suspended nanotubes are characterized individually using Raman spectroscopy and semiconductor parameters analysis and, overall, show, high crystallinity and low electrical resistance. The spring constants of doubly-clamped nanotubes were characterized using atomic force microscopy force-displacement measurements, with values as high as 70 N/m observed. Highly stiff MWCNTs are promising for a variety of applications, such as resonators and electrical interconnects. Through simulations, we estimate the resonance frequencies and pull-in voltages of these suspended nano-structures. The dependence of key parameters, such as the nanotube's length, Young's modulus, axial stress, and wall thickness is also discussed.
UR - http://hdl.handle.net/10754/625384
UR - http://ieeexplore.ieee.org/document/8013728/
UR - http://www.scopus.com/inward/record.url?scp=85028517850&partnerID=8YFLogxK
U2 - 10.1109/TNANO.2017.2742149
DO - 10.1109/TNANO.2017.2742149
M3 - Article
SN - 1536-125X
VL - 16
SP - 1037
EP - 1046
JO - IEEE Transactions on Nanotechnology
JF - IEEE Transactions on Nanotechnology
IS - 6
ER -