TY - JOUR
T1 - Fabrication of sustainable organic solvent nanofiltration membranes using cellulose–chitosan biopolymer blends
AU - Hardian, Rifan
AU - Alammar, Abdulaziz
AU - Holtzl, Tibor
AU - Szekely, Gyorgy
N1 - KAUST Repository Item: Exported on 2022-06-20
Acknowledgements: This work was supported by the King Abdullah University of Science and Technology (KAUST). AA acknowledges the PhD scholarship awarded by Saudi Aramco.
PY - 2022/6/18
Y1 - 2022/6/18
N2 - Membrane technologies have emerged as a promising alternative to energy-intensive separation processes in various industrial sectors. To address the sustainability challenge associated with the fabrication of separation membranes, a paradigm shift from the use of petrochemical-based raw materials to greener biobased sources is highly desired. In this study, blends of cellulose — as a plant-based material — and chitosan — obtained from shrimp farming waste and used as a biomass material — were investigated for the fabrication of oil and solvent-resistant nanofiltration membranes. The structural, thermal, mechanical, and morphological properties of the prepared membranes were characterized. Molecular simulations were performed to study the fractional free volume and interaction energy among membrane constituents. Adjusting the cellulose–chitosan ratio allowed fine-tuning the molecular sieving properties of the membranes, which exhibited outstanding separation performance and chemical stability even in harsh solvents, such as polar aprotic solvents, at the maximum temperature of 100 °C. Cellulose membranes containing 25 wt% chitosan achieved the lowest molecular weight cutoff value of 413 g mol−1 and a permeance of 24 L m−2 h−1 bar−1 in acetonitrile. The membranes showed stable separation performance over 7 days of continuous cross-flow nanofiltration. Moreover, the cellulose membranes blended with 10–25 wt% chitosan showed decreased water permeance from 52 to 38 L m−2 h−1 bar−1 and increased oil-removal efficiency from 73.8% to 98.6%. Furthermore, the membranes successfully underwent biodegradation, confirming their potential to close the loop of the sustainable lifecycle of membranes from cradle to grave.
AB - Membrane technologies have emerged as a promising alternative to energy-intensive separation processes in various industrial sectors. To address the sustainability challenge associated with the fabrication of separation membranes, a paradigm shift from the use of petrochemical-based raw materials to greener biobased sources is highly desired. In this study, blends of cellulose — as a plant-based material — and chitosan — obtained from shrimp farming waste and used as a biomass material — were investigated for the fabrication of oil and solvent-resistant nanofiltration membranes. The structural, thermal, mechanical, and morphological properties of the prepared membranes were characterized. Molecular simulations were performed to study the fractional free volume and interaction energy among membrane constituents. Adjusting the cellulose–chitosan ratio allowed fine-tuning the molecular sieving properties of the membranes, which exhibited outstanding separation performance and chemical stability even in harsh solvents, such as polar aprotic solvents, at the maximum temperature of 100 °C. Cellulose membranes containing 25 wt% chitosan achieved the lowest molecular weight cutoff value of 413 g mol−1 and a permeance of 24 L m−2 h−1 bar−1 in acetonitrile. The membranes showed stable separation performance over 7 days of continuous cross-flow nanofiltration. Moreover, the cellulose membranes blended with 10–25 wt% chitosan showed decreased water permeance from 52 to 38 L m−2 h−1 bar−1 and increased oil-removal efficiency from 73.8% to 98.6%. Furthermore, the membranes successfully underwent biodegradation, confirming their potential to close the loop of the sustainable lifecycle of membranes from cradle to grave.
UR - http://hdl.handle.net/10754/679159
UR - https://linkinghub.elsevier.com/retrieve/pii/S0376738822004884
U2 - 10.1016/j.memsci.2022.120743
DO - 10.1016/j.memsci.2022.120743
M3 - Article
SN - 0376-7388
SP - 120743
JO - Journal of Membrane Science
JF - Journal of Membrane Science
ER -