TY - JOUR
T1 - Facile One-Step Heat Treatment of Cu Foil for Stable Anode-Free Li Metal Batteries
AU - Chen, Jie
AU - Dai, Linna
AU - Hu, Pei
AU - Li, Zhen
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2023/1/1
Y1 - 2023/1/1
N2 - The anode-free lithium metal battery (AFLMB) is attractive for its ultimate high energy density. However, the poor cycling lifespan caused by the unstable anode interphase and the continuous Li consumption severely limits its practical application. Here, facile one-step heat treatment of the Cu foil current collectors before the cell assembly is proposed to improve the anode interphase during the cycling. After heat treatment of the Cu foil, homogeneous Li deposition is achieved during cycling because of the smoother surface morphology and enhanced lithiophilicity of the heat-treated Cu foil. In addition, Li2O-riched SEI is obtained after the Li deposition due to the generated Cu2O on the heat-treated Cu foil. The stable anode SEI can be successfully established and the Li consumption can be slowed down. Therefore, the cycling stability of the heat-treated Cu foil electrode is greatly improved in the Li|Cu half-cell and the symmetric cell. Moreover, the corresponding LFP|Cu anode-free full cell shows a much-improved capacity retention of 62% after 100 cycles, compared to that of 43% in the cell with the commercial Cu foil. This kind of facile but effective modification of current collectors can be directly applied in the anode-free batteries, which are assembled without Li pre-deposition on the anode.
AB - The anode-free lithium metal battery (AFLMB) is attractive for its ultimate high energy density. However, the poor cycling lifespan caused by the unstable anode interphase and the continuous Li consumption severely limits its practical application. Here, facile one-step heat treatment of the Cu foil current collectors before the cell assembly is proposed to improve the anode interphase during the cycling. After heat treatment of the Cu foil, homogeneous Li deposition is achieved during cycling because of the smoother surface morphology and enhanced lithiophilicity of the heat-treated Cu foil. In addition, Li2O-riched SEI is obtained after the Li deposition due to the generated Cu2O on the heat-treated Cu foil. The stable anode SEI can be successfully established and the Li consumption can be slowed down. Therefore, the cycling stability of the heat-treated Cu foil electrode is greatly improved in the Li|Cu half-cell and the symmetric cell. Moreover, the corresponding LFP|Cu anode-free full cell shows a much-improved capacity retention of 62% after 100 cycles, compared to that of 43% in the cell with the commercial Cu foil. This kind of facile but effective modification of current collectors can be directly applied in the anode-free batteries, which are assembled without Li pre-deposition on the anode.
UR - https://www.mdpi.com/1420-3049/28/2/548
UR - http://www.scopus.com/inward/record.url?scp=85146824561&partnerID=8YFLogxK
U2 - 10.3390/molecules28020548
DO - 10.3390/molecules28020548
M3 - Article
C2 - 36677606
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 2
ER -