TY - JOUR
T1 - Facile synthesis and gas transport properties of Hünlich's base-derived intrinsically microporous polyimides
AU - Wang, Yingge
AU - Ghanem, Bader
AU - Han, Yu
AU - Pinnau, Ingo
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by funding from King Abdullah University of Science and Technology (BAS/1/1323-01-01).
PY - 2020/5/23
Y1 - 2020/5/23
N2 - Tröger's base (TB) has been utilized as an important building block in designing ladder polymers of intrinsic microporosity (PIMs) and microporous polyimides (PIM-PIs) for membrane-based gas separations due to its unique V-shaped bicyclic structure and versatile molecular chemistry. Nearly a century after its discovery, Hünlich's base (HB) was recently reintroduced as a valuable diamine derivative of TB made by a single-step reaction of 2,4-diaminotoluene and formaldehyde, spurring use in molecular devices such as molecular tweezers and photo-switches. Unlike TB, HB has not been explored as a building block of PIMs and PIM-PIs for membrane-based gas separations. In this study, we synthesized two soluble PIM-PIs for the first time by reaction of HB as diamine and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) or 9,10-diisopropyltriptycene tetracarboxylic dianhydride (TDAi3), respectively. 6FDA-HB exhibited high Brunauer-Teller-Emmett (BET) surface area of 415 m2 g−1 and fractional free volume (FFV) of 0.26. The gas separation performance of the 6FDA-HB polymer was similar to other 6FDA-based dimethyl-substituted Tröger's base polyimide analogues, exhibiting O2, CO2 and H2 permeability of 62, 286, and 391 Barrer with O2/N2, CO2/CH4 and H2/CH4 selectivity of 4.4, 26 and 36, respectively. Compared to 6FDA-HB, the triptycene-containing Hünlich's base polyimide (TDAi3-HB) displayed a higher BET surface area (501 m2 g−1) owing to the presence of the rigid bridged tricyclic triptycene contortion site, resulting in about two-fold increase in O2 permeability to 188 Barrer coupled with slightly compromised O2/N2 selectivity of 4.1. Beside the merit of facile synthesis, the Hünlich's base-derived polyimides experienced relatively modest effects of physical aging on gas permeation properties.
AB - Tröger's base (TB) has been utilized as an important building block in designing ladder polymers of intrinsic microporosity (PIMs) and microporous polyimides (PIM-PIs) for membrane-based gas separations due to its unique V-shaped bicyclic structure and versatile molecular chemistry. Nearly a century after its discovery, Hünlich's base (HB) was recently reintroduced as a valuable diamine derivative of TB made by a single-step reaction of 2,4-diaminotoluene and formaldehyde, spurring use in molecular devices such as molecular tweezers and photo-switches. Unlike TB, HB has not been explored as a building block of PIMs and PIM-PIs for membrane-based gas separations. In this study, we synthesized two soluble PIM-PIs for the first time by reaction of HB as diamine and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) or 9,10-diisopropyltriptycene tetracarboxylic dianhydride (TDAi3), respectively. 6FDA-HB exhibited high Brunauer-Teller-Emmett (BET) surface area of 415 m2 g−1 and fractional free volume (FFV) of 0.26. The gas separation performance of the 6FDA-HB polymer was similar to other 6FDA-based dimethyl-substituted Tröger's base polyimide analogues, exhibiting O2, CO2 and H2 permeability of 62, 286, and 391 Barrer with O2/N2, CO2/CH4 and H2/CH4 selectivity of 4.4, 26 and 36, respectively. Compared to 6FDA-HB, the triptycene-containing Hünlich's base polyimide (TDAi3-HB) displayed a higher BET surface area (501 m2 g−1) owing to the presence of the rigid bridged tricyclic triptycene contortion site, resulting in about two-fold increase in O2 permeability to 188 Barrer coupled with slightly compromised O2/N2 selectivity of 4.1. Beside the merit of facile synthesis, the Hünlich's base-derived polyimides experienced relatively modest effects of physical aging on gas permeation properties.
UR - http://hdl.handle.net/10754/663237
UR - https://linkinghub.elsevier.com/retrieve/pii/S003238612030450X
UR - http://www.scopus.com/inward/record.url?scp=85085275264&partnerID=8YFLogxK
U2 - 10.1016/j.polymer.2020.122619
DO - 10.1016/j.polymer.2020.122619
M3 - Article
SN - 0032-3861
VL - 201
SP - 122619
JO - Polymer
JF - Polymer
ER -