TY - GEN
T1 - Fast-acting halide-perovskite-based RGB fluorescent materials for aggregate Gb/s visible light communication
AU - Wang, Yue
AU - Wang, Hong
AU - Alkhazragi, Omar
AU - Mohammed, Zyad O.F.
AU - Gutiérrez-Arzaluz, Luis
AU - Kang, Chun Hong
AU - Ng, Tien Khee
AU - Mohammed, Omar F.
AU - Ooi, Boon S.
N1 - Publisher Copyright:
© 2023 SPIE.
PY - 2023
Y1 - 2023
N2 - Three types of halide-perovskite-based fast-acting fluorescent materials have been demonstrated for high-speed visible light communication. All-inorganic metal-halide perovskite CsPbI3 was utilized to generate red color at 685 nm, and two-dimensional (2D) hybrid organic-inorganic halide perovskite nanosheets, (PEA)2PbI4 and (PEA)2PbBr4 (PEA= C8H9NH3), with peak photoluminescence (PL) wavelengths of 525 nm and 408 nm, were respectively used for green- and blue-light emission. The materials were then embedded in the polymethyl methacrylate (PMMA) to improve their durability and flexibility in practical applications. Pumped by a 405-nm violet laser, the red and green phosphors exhibit –3-dB modulation bandwidths of 14 MHz and 193 MHz, respectively. For the blue phosphor, a 124-MHz –3-dB bandwidth was obtained by using a 375-nm UVA laser diode. Benefitting from either the short PL lifetime or high PL quantum yield, aggregate Gb/s data transmission was achieved in the communication link. Direct current biased optical orthogonal frequency-division multiplexing (DCO-OFDM) modulation scheme was implemented with an adaptive quadrature amplitude modulation (QAM) signal. The transmission net data rates of RGB phosphors are 0.51 Gb/s, 0.93 Gb/s, and 0.43 Gb/s, respectively. The corresponding average bit error ratios are 3.5×10-3, 3.6×10-3, and 3.6×10-3, which are below the 7%-overhead forward error correction (FEC) criterion. Taking advantage of the tunability of the halide perovskite materials covering the whole visible range could further fulfill high-speed color-pure wavelength-division multiplexing by using a single source with multiple luminescent materials emitting light at different wavelengths. Besides, combining luminescent materials with specific colors, simultaneous white-light illumination, and high-speed communication can also be realized.
AB - Three types of halide-perovskite-based fast-acting fluorescent materials have been demonstrated for high-speed visible light communication. All-inorganic metal-halide perovskite CsPbI3 was utilized to generate red color at 685 nm, and two-dimensional (2D) hybrid organic-inorganic halide perovskite nanosheets, (PEA)2PbI4 and (PEA)2PbBr4 (PEA= C8H9NH3), with peak photoluminescence (PL) wavelengths of 525 nm and 408 nm, were respectively used for green- and blue-light emission. The materials were then embedded in the polymethyl methacrylate (PMMA) to improve their durability and flexibility in practical applications. Pumped by a 405-nm violet laser, the red and green phosphors exhibit –3-dB modulation bandwidths of 14 MHz and 193 MHz, respectively. For the blue phosphor, a 124-MHz –3-dB bandwidth was obtained by using a 375-nm UVA laser diode. Benefitting from either the short PL lifetime or high PL quantum yield, aggregate Gb/s data transmission was achieved in the communication link. Direct current biased optical orthogonal frequency-division multiplexing (DCO-OFDM) modulation scheme was implemented with an adaptive quadrature amplitude modulation (QAM) signal. The transmission net data rates of RGB phosphors are 0.51 Gb/s, 0.93 Gb/s, and 0.43 Gb/s, respectively. The corresponding average bit error ratios are 3.5×10-3, 3.6×10-3, and 3.6×10-3, which are below the 7%-overhead forward error correction (FEC) criterion. Taking advantage of the tunability of the halide perovskite materials covering the whole visible range could further fulfill high-speed color-pure wavelength-division multiplexing by using a single source with multiple luminescent materials emitting light at different wavelengths. Besides, combining luminescent materials with specific colors, simultaneous white-light illumination, and high-speed communication can also be realized.
KW - Fast-acting RGB fluorescent materials
KW - halide perovskites
KW - orthogonal frequency-division multiplexing
KW - visible light communication
UR - http://www.scopus.com/inward/record.url?scp=85159775296&partnerID=8YFLogxK
U2 - 10.1117/12.2647546
DO - 10.1117/12.2647546
M3 - Conference contribution
AN - SCOPUS:85159775296
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Optical Components and Materials XX
A2 - Jiang, Shibin
A2 - Digonnet, Michel J.
PB - SPIE
T2 - Optical Components and Materials XX 2023
Y2 - 30 January 2023 through 31 January 2023
ER -