@inproceedings{6f4f5c1666664bd2be528dac3fbd5e88,
title = "Fast and flexible convolutional sparse coding",
abstract = "Convolutional sparse coding (CSC) has become an increasingly important tool in machine learning and computer vision. Image features can be learned and subsequently used for classification and reconstruction tasks. As opposed to patch-based methods, convolutional sparse coding operates on whole images, thereby seamlessly capturing the correlation between local neighborhoods. In this paper, we propose a new approach to solving CSC problems and show that our method converges significantly faster and also finds better solutions than the state of the art. In addition, the proposed method is the first efficient approach to allow for proper boundary conditions to be imposed and it also supports feature learning from incomplete data as well as general reconstruction problems.",
author = "Felix Heide and Wolfgang Heidrich and Gordon Wetzstein",
note = "Publisher Copyright: {\textcopyright} 2015 IEEE.; IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 ; Conference date: 07-06-2015 Through 12-06-2015",
year = "2015",
month = oct,
day = "14",
doi = "10.1109/CVPR.2015.7299149",
language = "English (US)",
series = "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
publisher = "IEEE Computer Society",
pages = "5135--5143",
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015",
address = "United States",
}