TY - JOUR
T1 - Fast Bayesian optimal experimental design for seismic source inversion
AU - Long, Quan
AU - Motamed, Mohammad
AU - Tempone, Raul
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors are grateful for support from the Academic Excellency Alliance UT Austin-KAUST project-Uncertainty quantification for predictive modeling of the dissolution of porous and fractured media. Quan Long and Raul Tempone are members of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering.
PY - 2015/7
Y1 - 2015/7
N2 - We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.
AB - We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.
UR - http://hdl.handle.net/10754/564190
UR - http://arxiv.org/abs/arXiv:1502.07873v1
UR - http://www.scopus.com/inward/record.url?scp=84928138453&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2015.03.021
DO - 10.1016/j.cma.2015.03.021
M3 - Article
SN - 0045-7825
VL - 291
SP - 123
EP - 145
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
ER -