TY - GEN
T1 - Fast data anonymization with low information loss
AU - Ghinita, Gabriel
AU - Karras, Panagiotis
AU - Kalnis, Panos
AU - Mamoulis, Nikos
N1 - Publisher Copyright:
Copyright 2007 VLDB Endowment, ACM.
PY - 2007
Y1 - 2007
N2 - Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and l-diversity. k-anonymity protects against the identification of an individual's record. l-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches suffer from at least one of the following drawbacks: (i) The information loss metrics are counter-intuitive and fail to capture data inaccuracies inflicted for the sake of privacy. (ii) l-diversity is solved by techniques developed for the simpler k-anonymity problem, which introduces unnecessary inaccuracies. (iii) The anonymization process is inefficient in terms of computation and I/O cost. In this paper we propose a framework for efficient privacy preservation that addresses these deficiencies. First, we focus on one-dimensional (i.e., single attribute) quasi-identifiers, and study the properties of optimal solutions for k-anonymity and l-diversity, based on meaningful information loss metrics. Guided by these properties, we develop efficient heuristics to solve the one-dimensional problems in linear time. Finally, we generalize our solutions to multi-dimensional quasi-identifiers using space-mapping techniques. Extensive experimental evaluation shows that our techniques clearly outperform the state-of-the-art, in terms of execution time and information loss.
AB - Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and l-diversity. k-anonymity protects against the identification of an individual's record. l-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches suffer from at least one of the following drawbacks: (i) The information loss metrics are counter-intuitive and fail to capture data inaccuracies inflicted for the sake of privacy. (ii) l-diversity is solved by techniques developed for the simpler k-anonymity problem, which introduces unnecessary inaccuracies. (iii) The anonymization process is inefficient in terms of computation and I/O cost. In this paper we propose a framework for efficient privacy preservation that addresses these deficiencies. First, we focus on one-dimensional (i.e., single attribute) quasi-identifiers, and study the properties of optimal solutions for k-anonymity and l-diversity, based on meaningful information loss metrics. Guided by these properties, we develop efficient heuristics to solve the one-dimensional problems in linear time. Finally, we generalize our solutions to multi-dimensional quasi-identifiers using space-mapping techniques. Extensive experimental evaluation shows that our techniques clearly outperform the state-of-the-art, in terms of execution time and information loss.
UR - http://www.scopus.com/inward/record.url?scp=84988315609&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84988315609
T3 - 33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings
SP - 758
EP - 769
BT - 33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference Proceedings
A2 - Gehrke, Johannes
A2 - Koch, Christoph
A2 - Garofalakis, Minos
A2 - Aberer, Karl
A2 - Kanne, Carl-Christian
A2 - Neuhold, Erich J.
A2 - Ganti, Venkatesh
A2 - Klas, Wolfgang
A2 - Chan, Chee-Yong
A2 - Srivastava, Divesh
A2 - Florescu, Dana
A2 - Deshpande, Anand
PB - Association for Computing Machinery, Inc
T2 - 33rd International Conference on Very Large Data Bases, VLDB 2007
Y2 - 23 September 2007 through 27 September 2007
ER -