Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes

Jie Shen, Yichen Cai, Chenhui Zhang, Wan Wei, Cailing Chen, Lingmei Liu, Kuiwei Yang, Yinchang Ma, Yingge Wang, Chien-Chih Tseng, Jui-Han Fu, Xinglong Dong, Jiaqiang Li, Xixiang Zhang, Lain-Jong Li, Jianwen Jiang, Ingo Pinnau, Vincent Tung, Yu Han

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m−2 h−1 bar−1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.
Original languageEnglish (US)
JournalNature Materials
StatePublished - Aug 8 2022

ASJC Scopus subject areas

  • Mechanics of Materials
  • General Materials Science
  • General Chemistry
  • Mechanical Engineering
  • Condensed Matter Physics


Dive into the research topics of 'Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes'. Together they form a unique fingerprint.

Cite this