TY - JOUR
T1 - Ferroelectric field effect tuned giant electroresistance in La0.67Sr0.33MnO3/BaTiO3 heterostructures
AU - Zheng, Dongxing
AU - Zhang, Junwei
AU - Wang, Yuchen
AU - Wang, Zeyang
AU - Zheng, Wanchao
AU - Li, Dong
AU - Zhang, Linxing
AU - Jin, Chao
AU - Li, Peng
AU - Zhang, Xixiang
AU - Bai, Haili
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by National Natural Science Foundation of China (11704278, 51772207 & 11434006). J.Z., P.L. and X.Z. acknowledge the financial support from King Abdullah University of Science and Technology (KAUST). The authors acknowledge the Beijing Synchrotron Radiation Facility (1W1A and 4B9B beamlines, China) of the Chinese Academy of Sciences.
PY - 2018/10/29
Y1 - 2018/10/29
N2 - The mediation of metastable state has been approved to be a promising tool to achieve giant modulations of the physical properties in artificial structures. In this work, the metastable state La0.67Sr0.33MnO3 (LSMO) films with the coexistence of two phases were fabricated on the tensile ferroelectric BaTiO3 (BTO) substrates. Upon application of pulse electric fields to the BTO substrates, the oxygen vacancies and charge redistribute and result in giant and volatile electroresistance (~230%) and normal and nonvolatile electroresistance (~5%) in the LSMO films, respectively. The observation of binary resistance states is very interesting and totally un-expected, since only a normal electroresistance has been reported in the similar LSMO/piezoelectric structures previously. Here, we attribute the binary state performance to the model of oxygen redistribution and charge accumulation/depletion modulated by the ferroelectric field effect. The oxygen redistribution strongly affects the double exchange interaction in the LSMO layer, which leads to the giant and volatile electroresistance. This work indicates that the mediation of metastable states by electric field is a promising way to enrich the physical properties in artificial structures.
AB - The mediation of metastable state has been approved to be a promising tool to achieve giant modulations of the physical properties in artificial structures. In this work, the metastable state La0.67Sr0.33MnO3 (LSMO) films with the coexistence of two phases were fabricated on the tensile ferroelectric BaTiO3 (BTO) substrates. Upon application of pulse electric fields to the BTO substrates, the oxygen vacancies and charge redistribute and result in giant and volatile electroresistance (~230%) and normal and nonvolatile electroresistance (~5%) in the LSMO films, respectively. The observation of binary resistance states is very interesting and totally un-expected, since only a normal electroresistance has been reported in the similar LSMO/piezoelectric structures previously. Here, we attribute the binary state performance to the model of oxygen redistribution and charge accumulation/depletion modulated by the ferroelectric field effect. The oxygen redistribution strongly affects the double exchange interaction in the LSMO layer, which leads to the giant and volatile electroresistance. This work indicates that the mediation of metastable states by electric field is a promising way to enrich the physical properties in artificial structures.
UR - http://hdl.handle.net/10754/629477
UR - https://pubs.acs.org/doi/10.1021/acsami.8b15498
UR - http://www.scopus.com/inward/record.url?scp=85056473676&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b15498
DO - 10.1021/acsami.8b15498
M3 - Article
C2 - 30370759
SN - 1944-8244
VL - 10
SP - 40328
EP - 40334
JO - ACS Applied Materials & Interfaces
JF - ACS Applied Materials & Interfaces
IS - 46
ER -