TY - GEN
T1 - Few-shot News Recommendation via Cross-lingual Transfer
AU - Guo, Taicheng
AU - Yu, Lu
AU - Shihada, Basem
AU - Zhang, Xiangliang
N1 - Publisher Copyright:
© 2023 ACM.
PY - 2023/4/30
Y1 - 2023/4/30
N2 - The cold-start problem has been commonly recognized in recommendation systems and studied by following a general idea to leverage the abundant interaction records of warm users to infer the preference of cold users. However, the performance of these solutions is limited by the amount of records available from warm users to use. Thus, building a recommendation system based on few interaction records from a few users still remains a challenging problem for unpopular or early-stage recommendation platforms. This paper focuses on solving the few-shot recommendation problem for news recommendation based on two observations. First, news at different platforms (even in different languages) may share similar topics. Second, the user preference over these topics is transferable across different platforms. Therefore, we propose to solve the few-shot news recommendation problem by transferring the user-news preference from a many-shot source domain to a few-shot target domain. To bridge two domains that are even in different languages and without any overlapping users and news, we propose a novel unsupervised cross-lingual transfer model as the news encoder that aligns semantically similar news in two domains. A user encoder is constructed on top of the aligned news encoding and transfers the user preference from the source to target domain. Experimental results on two real-world news recommendation datasets show the superior performance of our proposed method on addressing few-shot news recommendation, comparing to the baselines. The source code can be found at https://github.com/taichengguo/Few-shot-NewsRec.
AB - The cold-start problem has been commonly recognized in recommendation systems and studied by following a general idea to leverage the abundant interaction records of warm users to infer the preference of cold users. However, the performance of these solutions is limited by the amount of records available from warm users to use. Thus, building a recommendation system based on few interaction records from a few users still remains a challenging problem for unpopular or early-stage recommendation platforms. This paper focuses on solving the few-shot recommendation problem for news recommendation based on two observations. First, news at different platforms (even in different languages) may share similar topics. Second, the user preference over these topics is transferable across different platforms. Therefore, we propose to solve the few-shot news recommendation problem by transferring the user-news preference from a many-shot source domain to a few-shot target domain. To bridge two domains that are even in different languages and without any overlapping users and news, we propose a novel unsupervised cross-lingual transfer model as the news encoder that aligns semantically similar news in two domains. A user encoder is constructed on top of the aligned news encoding and transfers the user preference from the source to target domain. Experimental results on two real-world news recommendation datasets show the superior performance of our proposed method on addressing few-shot news recommendation, comparing to the baselines. The source code can be found at https://github.com/taichengguo/Few-shot-NewsRec.
KW - Cross domain recommendation
KW - News recommendation
KW - Transfer learning
UR - http://www.scopus.com/inward/record.url?scp=85159264454&partnerID=8YFLogxK
U2 - 10.1145/3543507.3583383
DO - 10.1145/3543507.3583383
M3 - Conference contribution
AN - SCOPUS:85159264454
T3 - ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023
SP - 1130
EP - 1140
BT - ACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023
PB - Association for Computing Machinery, Inc
T2 - 2023 World Wide Web Conference, WWW 2023
Y2 - 30 April 2023 through 4 May 2023
ER -