Field-Split Preconditioned Inexact Newton Algorithms

Lulu Liu, David E. Keyes

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.
Original languageEnglish (US)
Pages (from-to)A1388-A1409
Number of pages1
JournalSIAM Journal on Scientific Computing
Volume37
Issue number3
DOIs
StatePublished - Jun 2 2015

Fingerprint

Dive into the research topics of 'Field-Split Preconditioned Inexact Newton Algorithms'. Together they form a unique fingerprint.

Cite this