TY - JOUR
T1 - Finite element simulation of dynamic wetting flows as an interface formation process
AU - Sprittles, J.E.
AU - Shikhmurzaev, Y.D.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: The authors would like to thank Dr Mark Wilson, Dr Paul Suckling and Dr Alex Lukyanov for many stimulating discussions about the FEM implementation of dynamic wetting phenomena and Jonathan Simmons for carefully proof reading the manuscript. JES kindly acknowledges the financial support of EPSRC via a Postdoctoral Fellowship in Mathematics.This publication was based on work supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/1
Y1 - 2013/1
N2 - A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the 'hydrodynamic resist to dynamic wetting', is discovered where the influence of the capillary's radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.
AB - A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the 'hydrodynamic resist to dynamic wetting', is discovered where the influence of the capillary's radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.
UR - http://hdl.handle.net/10754/598329
UR - https://linkinghub.elsevier.com/retrieve/pii/S0021999112003919
UR - http://www.scopus.com/inward/record.url?scp=84870588008&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2012.07.018
DO - 10.1016/j.jcp.2012.07.018
M3 - Article
SN - 0021-9991
VL - 233
SP - 34
EP - 65
JO - Journal of Computational Physics
JF - Journal of Computational Physics
IS - 1
ER -