TY - JOUR
T1 - First principles study of lithium insertion in bulk silicon
AU - Wan, Wenhui
AU - Zhang, Qianfan
AU - Cui, Yi
AU - Wang, Enge
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-11-001-12
Acknowledgements: This work was supported by CAS and NSFC. EW acknowledges Stanford GCEP visiting scholar program and KITP at UCSB. We also gratefully acknowledge the computational time by the Swedish agency SNAC. YC acknowledges support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-11-001-12), Stanford GCEP and US ONR.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2010/9/23
Y1 - 2010/9/23
N2 - Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.
AB - Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (Td) site. The diffusion of a Li atom in the Si lattice is through a Td-Hex-Td trajectory, where the Hex site is the hexagonal transition site with an energy barrier of 0.58 eV. We have also systematically studied the local structural transition of a LixSi alloy with x varying from 0 to 0.25. At low doping concentration (x = 0-0.125), Li atoms prefer to be separated from each other, resulting in a homogeneous doping distribution. Starting from x = 0.125, Li atoms tend to form clusters induced by a lattice distortion with frequent breaking and reforming of Si-Si bonds. When x ≥ 0.1875, Li atoms will break some Si-Si bonds permanently, which results in dangling bonds. These dangling bonds create negatively charged zones, which is the main driving force for Li atom clustering at high doping concentration. © 2010 IOP Publishing Ltd.
UR - http://hdl.handle.net/10754/598332
UR - https://iopscience.iop.org/article/10.1088/0953-8984/22/41/415501
UR - http://www.scopus.com/inward/record.url?scp=78249275589&partnerID=8YFLogxK
U2 - 10.1088/0953-8984/22/41/415501
DO - 10.1088/0953-8984/22/41/415501
M3 - Article
C2 - 21386598
SN - 0953-8984
VL - 22
SP - 415501
JO - Journal of Physics: Condensed Matter
JF - Journal of Physics: Condensed Matter
IS - 41
ER -