TY - GEN
T1 - FishNet
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
AU - Khan, Faizan Farooq
AU - Li, Xiang
AU - Temple, Andrew J.
AU - Elhoseiny, Mohamed
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Aquatic species are essential components of the world's ecosystem, and the preservation of aquatic biodiversity is crucial for maintaining proper ecosystem functioning. Unfortunately, increasing anthropogenic pressures such as overfishing, climate change, and coastal development pose significant threats to aquatic biodiversity. To address this challenge, it is necessary to design an automatic aquatic species monitoring systems that can help researchers and policymakers better understand changes in aquatic ecosystems and take appropriate actions to preserve biodiversity. However, the development of such systems is impeded by a lack of large-scale diverse aquatic species datasets. Existing aquatic species recognition datasets generally have a limited number of species, nor do they provide functional trait data, and so have only narrow potential for application. To address the need for generalized systems that can recognize, locate, and predict a wide array of species and their functional traits, we present FishNet, a large-scale diverse dataset containing 94,532 meticulously organized images from 17,357 aquatic species, organized according to aquatic biological taxonomy (order, family, genus, and species). We further build three benchmarks, i.e., fish classification, fish detection, and functional trait prediction, inspired by ecological research needs, to facilitate the development of aquatic species recognition systems, and promote further research in the field of aquatic ecology. Our FishNet dataset has the potential to encourage the development of more accurate and effective tools for the monitoring and protection of aquatic ecosystems, and hence take effective action toward the conservation of our planet's aquatic biodiversity. Our dataset and code will be released at https://fishnet-2023.github.io/.
AB - Aquatic species are essential components of the world's ecosystem, and the preservation of aquatic biodiversity is crucial for maintaining proper ecosystem functioning. Unfortunately, increasing anthropogenic pressures such as overfishing, climate change, and coastal development pose significant threats to aquatic biodiversity. To address this challenge, it is necessary to design an automatic aquatic species monitoring systems that can help researchers and policymakers better understand changes in aquatic ecosystems and take appropriate actions to preserve biodiversity. However, the development of such systems is impeded by a lack of large-scale diverse aquatic species datasets. Existing aquatic species recognition datasets generally have a limited number of species, nor do they provide functional trait data, and so have only narrow potential for application. To address the need for generalized systems that can recognize, locate, and predict a wide array of species and their functional traits, we present FishNet, a large-scale diverse dataset containing 94,532 meticulously organized images from 17,357 aquatic species, organized according to aquatic biological taxonomy (order, family, genus, and species). We further build three benchmarks, i.e., fish classification, fish detection, and functional trait prediction, inspired by ecological research needs, to facilitate the development of aquatic species recognition systems, and promote further research in the field of aquatic ecology. Our FishNet dataset has the potential to encourage the development of more accurate and effective tools for the monitoring and protection of aquatic ecosystems, and hence take effective action toward the conservation of our planet's aquatic biodiversity. Our dataset and code will be released at https://fishnet-2023.github.io/.
UR - http://www.scopus.com/inward/record.url?scp=85182575587&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.01874
DO - 10.1109/ICCV51070.2023.01874
M3 - Conference contribution
AN - SCOPUS:85182575587
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 20439
EP - 20449
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 2 October 2023 through 6 October 2023
ER -