TY - JOUR
T1 - Flexible Design for α-Duplex Communications in Multi-Tier Cellular Networks
AU - Alammouri, Ahmad
AU - Elsawy, Hesham
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/6/13
Y1 - 2016/6/13
N2 - Backward compatibility is an essential ingredient for the success of new technologies. In the context of inband full-duplex (FD) communication, FD base stations (BSs) should support half-duplex (HD) users’ equipment (UEs) without sacrificing the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink transmissions. The results show that FD UEs are not necessarily required to harvest rate gains from FD BSs. In particular, the results show that adding FD UEs to FD BSs offers a maximum of 5% rate gain over FD BSs and HD UEs case if multi-user diversity is exploited, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs’ side. To this end, we shed light on practical scenarios where HD UEs operation with FD BSs outperforms the operation when both the BSs and UEs are FD and we find a closed form expression for the critical value of the self-interference attenuation power required for the FD UEs to outperform HD UEs.
AB - Backward compatibility is an essential ingredient for the success of new technologies. In the context of inband full-duplex (FD) communication, FD base stations (BSs) should support half-duplex (HD) users’ equipment (UEs) without sacrificing the foreseen FD gains. This paper presents flexible and tractable modeling framework for multi-tier cellular networks with FD BSs and FD/HD UEs. The presented model is based on stochastic geometry and accounts for the intrinsic vulnerability of uplink transmissions. The results show that FD UEs are not necessarily required to harvest rate gains from FD BSs. In particular, the results show that adding FD UEs to FD BSs offers a maximum of 5% rate gain over FD BSs and HD UEs case if multi-user diversity is exploited, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs’ side. To this end, we shed light on practical scenarios where HD UEs operation with FD BSs outperforms the operation when both the BSs and UEs are FD and we find a closed form expression for the critical value of the self-interference attenuation power required for the FD UEs to outperform HD UEs.
UR - http://hdl.handle.net/10754/614399
UR - http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7490343
UR - http://www.scopus.com/inward/record.url?scp=84985991790&partnerID=8YFLogxK
U2 - 10.1109/TCOMM.2016.2580147
DO - 10.1109/TCOMM.2016.2580147
M3 - Article
SN - 0090-6778
VL - 64
SP - 3548
EP - 3562
JO - IEEE Transactions on Communications
JF - IEEE Transactions on Communications
IS - 8
ER -