Abstract
The lifespan of practical lithium (Li)-metal batteries is severely hindered by the instability of Li-metal anodes. Fluorinated solid electrolyte interphase (SEI) emerges as a promising strategy to improve the stability of Li-metal anodes. The rational design of fluorinated molecules is pivotal to construct fluorinated SEI. Herein, design principles of fluorinated molecules are proposed. Fluoroalkyl (−CF2CF2−) is selected as an enriched F reservoir and the defluorination of the C−F bond is driven by leaving groups on β-sites. An activated fluoroalkyl molecule (AFA), 2,2,3,3-tetrafluorobutane-1,4-diol dinitrate is unprecedentedly proposed to render fast and complete defluorination and generate uniform fluorinated SEI on Li-metal anodes. In Li–sulfur (Li−S) batteries under practical conditions, the fluorinated SEI constructed by AFA undergoes 183 cycles, which is three times the SEI formed by LiNO3. Furthermore, a Li−S pouch cell of 360 Wh kg−1 delivers 25 cycles with AFA. This work demonstrates rational molecular design principles of fluorinated molecules to construct fluorinated SEI for practical Li-metal batteries.
Original language | English (US) |
---|---|
Journal | Angewandte Chemie - International Edition |
Volume | 61 |
Issue number | 29 |
DOIs | |
State | Published - Jul 18 2022 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Catalysis