Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries

Lalit Sharma, Shashishekar P. Adiga, Husam N. Alshareef, Prabeer Barpanda

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

Cost, safety, and cycle life have emerged as prime concerns to build robust batteries to cater to the global energy demand. These concerns are impacted by all battery components, but the realizable energy density of lithium-ion batteries (LIBs) is limited by the performance of cathodes. Thus, cathode materials have a significant role to play in advancing the performance and economics of secondary batteries. To realize next generation Li-ion and post Li-ion batteries, a variety of cathode insertion materials have been explored, but finding a cost effective and stable cathode material that can deliver high energy density has been a daunting task. Oxide cathode materials are ubiquitous in commercial applications, as they can deliver high capacity. In comparison, polyanionic insertion materials can offer tuneable (high) redox potential, operational safety, and structural as well as thermal stability. Indeed, a wide range of polyanionic materials like phosphates, borates, sulfates, and their complexes have been reported. In this article, the alkali metal fluorophosphates class of polyanionic cathodes for secondary batteries is discussed. The various reported fluorophosphate insertion materials are discussed in terms of their electrochemical and electrocatalytic properties. The historical overview, recent progress, and remaining challenges for polyanionic fluorophosphates are presented along with suggested future research directions and potential application.
Original languageEnglish (US)
Pages (from-to)2001449
JournalAdvanced Energy Materials
DOIs
StatePublished - Jul 27 2020

Fingerprint

Dive into the research topics of 'Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries'. Together they form a unique fingerprint.

Cite this