TY - JOUR
T1 - Flux-assisted synthesis of SnNb2O6 for tuning photocatalytic properties
AU - Noureldine, Dalal
AU - Anjum, Dalaver H.
AU - Takanabe, Kazuhiro
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2014
Y1 - 2014
N2 - A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of flux was investigated in detail using different flux to reactant molar ratios (1 : 1, 3 : 1, 6 : 1, 10 : 1, and 14 : 1) and different reaction temperatures (300, 500, and 600 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), the Brunauer-Emmett-Teller method (BET), and high resolution scanning transmission electron microscopy (HRTEM). Flux-assisted synthesis led to tin niobate particles of platelet morphology with smooth surfaces. The synthesized crystal showed a 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1 : 10 or higher) exhibited slightly improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). The photo-deposition of platinum and PbO2 was examined to gain a better understanding of electrons and hole migration pathways in these layered materials. The HR-STEM observation revealed that no preferential deposition of these nanoparticles was observed depending on the surface facets of SnNb 2O6. This journal is © the Partner Organisations 2014.
AB - A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of flux was investigated in detail using different flux to reactant molar ratios (1 : 1, 3 : 1, 6 : 1, 10 : 1, and 14 : 1) and different reaction temperatures (300, 500, and 600 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), the Brunauer-Emmett-Teller method (BET), and high resolution scanning transmission electron microscopy (HRTEM). Flux-assisted synthesis led to tin niobate particles of platelet morphology with smooth surfaces. The synthesized crystal showed a 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1 : 10 or higher) exhibited slightly improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). The photo-deposition of platinum and PbO2 was examined to gain a better understanding of electrons and hole migration pathways in these layered materials. The HR-STEM observation revealed that no preferential deposition of these nanoparticles was observed depending on the surface facets of SnNb 2O6. This journal is © the Partner Organisations 2014.
UR - http://hdl.handle.net/10754/563197
UR - http://xlink.rsc.org/?DOI=C4CP00654B
UR - http://www.scopus.com/inward/record.url?scp=84900834199&partnerID=8YFLogxK
U2 - 10.1039/c4cp00654b
DO - 10.1039/c4cp00654b
M3 - Article
C2 - 24756170
SN - 1463-9076
VL - 16
SP - 10762
EP - 10769
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 22
ER -