Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries

Jian Yin, Wenli Zhang, Gang Huang, Nuha A. Alhebshi, Numan Salah, Mohamed N. Hedhili, Husam N. Alshareef

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Graphite has become a critical material because of its essential role in the lithium-ion battery (LIB) industry. However, the synthesis of graphite requires an energy-intensive thermal treatment. Also, when used in sodium-ion and potassium-ion batteries (SIBs and PIBs), the graphite anode shows poor capacities and cycling stability, which hinders the development of next-generation battery technologies. Finding suitable anode materials for commercial alkali metal-ion batteries is not only urgent for the energy storage industry, but is also important for economic and sustainable development. In this work, we use fly ash carbon (FAC), a residue of crude oil combustion, as an anode material for alkali metal-ion batteries. The FAC anodes show relatively high capacities and excellent cycling stability. The charge storage mechanism of FAC anode is shown to be intercalation coupled with redox reactions of oxygen functional groups. This work shows that FAC is a promising scalable anode material for alkali metal-ion batteries.
Original languageEnglish (US)
Pages (from-to)26421-26430
Number of pages10
JournalACS Applied Materials & Interfaces
Volume13
Issue number22
DOIs
StatePublished - May 28 2021

ASJC Scopus subject areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries'. Together they form a unique fingerprint.

Cite this