TY - JOUR
T1 - Forecasting emergency department overcrowding: A deep learning framework
AU - Harrou, Fouzi
AU - Dairi, Abdelkader
AU - Kadri, Farid
AU - Sun, Ying
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): OSR-2019-CRG7-3800
Acknowledgements: This publication is based upon work supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award no.: OSR-2019-CRG7-3800.
PY - 2020/9/21
Y1 - 2020/9/21
N2 - As the demand for medical cares has considerably expanded, the issue of managing patient flow in hospitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. This can lead to overcrowding and the degradation of the quality of the provided medical services. Thus, the accurate modeling and forecasting of ED visits are critical for efficiently managing the overcrowding problems and enable appropriate optimization of the available resources. This paper proposed an effective method to forecast daily and hourly visits at an ED using Variational AutoEncoder (VAE) algorithm. Indeed, the VAE model as a deep learning-based model has gained special attention in features extraction and modeling due to its distribution-free assumptions and superior nonlinear approximation. Two types of forecasting were conducted: one- and multi-step-ahead forecasting. To the best of our knowledge, this is the first time that the VAE is investigated to improve forecasting of patient arrivals time-series data. Data sets from the pediatric emergency department at Lille regional hospital center, France, are employed to evaluate the forecasting performance of the introduced method. The VAE model was evaluated and compared with seven methods namely Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM Network (ConvLSTM), restricted Boltzmann machine (RBM), Gated recurrent units (GRUs), and convolutional neural network (CNN). The results clearly show the promising performance of these deep learning models in forecasting ED visits and emphasize the better performance of the VAE in comparison to the other models.
AB - As the demand for medical cares has considerably expanded, the issue of managing patient flow in hospitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. This can lead to overcrowding and the degradation of the quality of the provided medical services. Thus, the accurate modeling and forecasting of ED visits are critical for efficiently managing the overcrowding problems and enable appropriate optimization of the available resources. This paper proposed an effective method to forecast daily and hourly visits at an ED using Variational AutoEncoder (VAE) algorithm. Indeed, the VAE model as a deep learning-based model has gained special attention in features extraction and modeling due to its distribution-free assumptions and superior nonlinear approximation. Two types of forecasting were conducted: one- and multi-step-ahead forecasting. To the best of our knowledge, this is the first time that the VAE is investigated to improve forecasting of patient arrivals time-series data. Data sets from the pediatric emergency department at Lille regional hospital center, France, are employed to evaluate the forecasting performance of the introduced method. The VAE model was evaluated and compared with seven methods namely Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM Network (ConvLSTM), restricted Boltzmann machine (RBM), Gated recurrent units (GRUs), and convolutional neural network (CNN). The results clearly show the promising performance of these deep learning models in forecasting ED visits and emphasize the better performance of the VAE in comparison to the other models.
UR - http://hdl.handle.net/10754/665328
UR - https://linkinghub.elsevier.com/retrieve/pii/S0960077920306433
UR - http://www.scopus.com/inward/record.url?scp=85091255763&partnerID=8YFLogxK
U2 - 10.1016/j.chaos.2020.110247
DO - 10.1016/j.chaos.2020.110247
M3 - Article
C2 - 32982079
SN - 0960-0779
VL - 139
SP - 110247
JO - Chaos, Solitons and Fractals
JF - Chaos, Solitons and Fractals
ER -