TY - JOUR
T1 - Fractional-order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic
AU - Bahloul, Mohamed
AU - Chahid, Abderrazak
AU - Laleg-Kirati, Taous-Meriem
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST)
PY - 2020
Y1 - 2020
N2 - Goal: Coronavirus disease (COVID-19) is a contagious disease caused by a newly discovered coronavirus, initially identified in the mainland of China, late December 2019. COVID-19 has been confirmed as a higher infectious disease that can spread quickly in a community population depending on the number of susceptible and infected cases and also depending on their movement in the community. Since January 2020, COVID-19 has reached out to many countries worldwide, and the number of daily cases remains to increase rapidly. Method: Several mathematical and statistical models have been developed to understand, track, and forecast the trend of the virus spread. Susceptible-Exposed-Infected-Quarantined- Recovered-Death-Insusceptible (SEIQRDP) model is one of the most promising epidemiological models that has been suggested for estimating the transmissibility of the COVID-19. In the present study, we propose a fractional-order SEIQRDP model to analyze the COVID-19 pandemic. In the recent decade, it has proven that many aspects in many domains can be described very successfully using fractional order differential equations. Accordingly, the Fractional-order paradigm offers a flexible, appropriate, and reliable framework for pandemic growth characterization. In fact, due to its non-locality properties, a fractional-order operator takes into consideration the variables' memory effect, and hence, it takes into account the sub-diffusion process of confirmed and recovered cases. Results' The validation of the studied fractional-order model using real COVID-19 data for different cities in China, Italy, and France show the potential of the proposed paradigm in predicting and understanding the pandemic dynamic. Conclusions: Fractional-order epidemiological models might play an important role in understanding and predicting the spread of the COVID-19, also providing relevant guidelines for controlling the pandemic.
AB - Goal: Coronavirus disease (COVID-19) is a contagious disease caused by a newly discovered coronavirus, initially identified in the mainland of China, late December 2019. COVID-19 has been confirmed as a higher infectious disease that can spread quickly in a community population depending on the number of susceptible and infected cases and also depending on their movement in the community. Since January 2020, COVID-19 has reached out to many countries worldwide, and the number of daily cases remains to increase rapidly. Method: Several mathematical and statistical models have been developed to understand, track, and forecast the trend of the virus spread. Susceptible-Exposed-Infected-Quarantined- Recovered-Death-Insusceptible (SEIQRDP) model is one of the most promising epidemiological models that has been suggested for estimating the transmissibility of the COVID-19. In the present study, we propose a fractional-order SEIQRDP model to analyze the COVID-19 pandemic. In the recent decade, it has proven that many aspects in many domains can be described very successfully using fractional order differential equations. Accordingly, the Fractional-order paradigm offers a flexible, appropriate, and reliable framework for pandemic growth characterization. In fact, due to its non-locality properties, a fractional-order operator takes into consideration the variables' memory effect, and hence, it takes into account the sub-diffusion process of confirmed and recovered cases. Results' The validation of the studied fractional-order model using real COVID-19 data for different cities in China, Italy, and France show the potential of the proposed paradigm in predicting and understanding the pandemic dynamic. Conclusions: Fractional-order epidemiological models might play an important role in understanding and predicting the spread of the COVID-19, also providing relevant guidelines for controlling the pandemic.
UR - http://hdl.handle.net/10754/662790
UR - https://ieeexplore.ieee.org/document/9178435/
U2 - 10.1109/OJEMB.2020.3019758
DO - 10.1109/OJEMB.2020.3019758
M3 - Article
SN - 2644-1276
SP - 1
EP - 1
JO - IEEE Open Journal of Engineering in Medicine and Biology
JF - IEEE Open Journal of Engineering in Medicine and Biology
ER -