TY - JOUR
T1 - Fully discrete energy stable scheme for a phase-field moving contact line model with variable densities and viscosities
AU - Zhu, Guangpu
AU - Chen, Huangxin
AU - Li, Aifen
AU - Sun, Shuyu
AU - Yao, Jun
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): BAS/1/1351-01, REP/1/2879-01, URF/1/2993-01
Acknowledgements: Guangpu Zhu and Huangxin Chen contributed equally to this study. Jun Yao and Guangpu Zhu acknowledge that this study was supported by the National Science and Technology Major Project (2016ZX05011-001) and the NSF of China (51804325 and 51674280). Huangxin Chen was supported by the NSF of China (Grant Nos. 11771363, 91630204, and 51661135011), the Fundamental Research Funds for the Central Universities (Grant No. 20720180003), and NSF of Fujian Province of China (No.2018J01004). Shuyu Sun acknowledges that the research reported in this publication was supported in part by funding from King Abdullah University of Science and Technology (KAUST) through grants BAS/1/1351-01, URF/1/2993-01, and REP/1/2879-01.
PY - 2020/3/4
Y1 - 2020/3/4
N2 - In this study, we propose a fully discrete energy stable scheme for the phase-field moving contact line model with variable densities and viscosities. The mathematical model comprises a Cahn–Hilliard equation, Navier–Stokes equation, and the generalized Navier boundary condition for the moving contact line. A scalar auxiliary variable is employed to transform the governing system into an equivalent form, thereby allowing the double well potential to be treated semi-explicitly. A stabilization term is added to balance the explicit nonlinear term originating from the surface energy at the fluid–solid interface. A pressure stabilization method is used to decouple the velocity and pressure computations. Some subtle implicit–explicit treatments are employed to deal with convention and stress terms. We establish a rigorous proof of the energy stability for the proposed time-marching scheme. A finite difference method based on staggered grids is then used to spatially discretize the constructed time-marching scheme. We also prove that the fully discrete scheme satisfies the discrete energy dissipation law. Our numerical results demonstrate the accuracy and energy stability of the proposed scheme. Using our numerical scheme, we analyze the contact line dynamics based on a shear flow-driven droplet sliding case. Three-dimensional droplet spreading is also investigated based on a chemically patterned surface. Our numerical simulation accurately predicts the expected energy evolution and it successfully reproduces the expected phenomena where an oil droplet contracts inward on a hydrophobic zone and then spreads outward rapidly on a hydrophilic zone.
AB - In this study, we propose a fully discrete energy stable scheme for the phase-field moving contact line model with variable densities and viscosities. The mathematical model comprises a Cahn–Hilliard equation, Navier–Stokes equation, and the generalized Navier boundary condition for the moving contact line. A scalar auxiliary variable is employed to transform the governing system into an equivalent form, thereby allowing the double well potential to be treated semi-explicitly. A stabilization term is added to balance the explicit nonlinear term originating from the surface energy at the fluid–solid interface. A pressure stabilization method is used to decouple the velocity and pressure computations. Some subtle implicit–explicit treatments are employed to deal with convention and stress terms. We establish a rigorous proof of the energy stability for the proposed time-marching scheme. A finite difference method based on staggered grids is then used to spatially discretize the constructed time-marching scheme. We also prove that the fully discrete scheme satisfies the discrete energy dissipation law. Our numerical results demonstrate the accuracy and energy stability of the proposed scheme. Using our numerical scheme, we analyze the contact line dynamics based on a shear flow-driven droplet sliding case. Three-dimensional droplet spreading is also investigated based on a chemically patterned surface. Our numerical simulation accurately predicts the expected energy evolution and it successfully reproduces the expected phenomena where an oil droplet contracts inward on a hydrophobic zone and then spreads outward rapidly on a hydrophilic zone.
UR - http://hdl.handle.net/10754/627045
UR - https://linkinghub.elsevier.com/retrieve/pii/S0307904X20301153
UR - http://www.scopus.com/inward/record.url?scp=85082667333&partnerID=8YFLogxK
U2 - 10.1016/j.apm.2020.02.022
DO - 10.1016/j.apm.2020.02.022
M3 - Article
SN - 0307-904X
VL - 83
SP - 614
EP - 639
JO - Applied Mathematical Modelling
JF - Applied Mathematical Modelling
ER -