TY - JOUR
T1 - Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids
AU - Luo, Li
AU - Liu, Lulu
AU - Cai, Xiao Chuan
AU - Keyes, David E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The first author was supported in part by the National Natural Science Foundation of China (11701547), the second author was supported in part by the National Natural Science Foundation of China (11901296) and by the Natural Science Foundation for Young Scientists of Jiangsu (BK20180450). This research was also supported by the Extreme Computing Research Center of the King Abdullah University of Science and Technology.
PY - 2020/2/7
Y1 - 2020/2/7
N2 - Simulation of subsurface flows in porous media is difficult due to the nonlinearity of the operators and the high heterogeneity of material coefficients. In this paper, we present a scalable fully implicit solver for incompressible two-phase flows based on overlapping domain decomposition methods. Specifically, an inexact Newton-Krylov algorithm with analytic Jacobian is used to solve the nonlinear systems arising from the discontinuous Galerkin discretization of the governing equations on 3D unstructured grids. The linear Jacobian system is preconditioned by additive Schwarz algorithms, which are naturally suitable for parallel computing. We propose a hybrid two-level version of the additive Schwarz preconditioner consisting of a nested coarse space to improve the robustness and scalability of the classical one-level version. On the coarse level, a smaller linear system arising from the same discretization of the problem on a coarse grid is solved by using GMRES with a one-level preconditioner until a relative tolerance is reached. Numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed solver for 3D heterogeneous medium problems. We also report the parallel scalability of the proposed algorithms on a supercomputer with up to 8,192 processor cores.
AB - Simulation of subsurface flows in porous media is difficult due to the nonlinearity of the operators and the high heterogeneity of material coefficients. In this paper, we present a scalable fully implicit solver for incompressible two-phase flows based on overlapping domain decomposition methods. Specifically, an inexact Newton-Krylov algorithm with analytic Jacobian is used to solve the nonlinear systems arising from the discontinuous Galerkin discretization of the governing equations on 3D unstructured grids. The linear Jacobian system is preconditioned by additive Schwarz algorithms, which are naturally suitable for parallel computing. We propose a hybrid two-level version of the additive Schwarz preconditioner consisting of a nested coarse space to improve the robustness and scalability of the classical one-level version. On the coarse level, a smaller linear system arising from the same discretization of the problem on a coarse grid is solved by using GMRES with a one-level preconditioner until a relative tolerance is reached. Numerical experiments are presented to demonstrate the effectiveness and efficiency of the proposed solver for 3D heterogeneous medium problems. We also report the parallel scalability of the proposed algorithms on a supercomputer with up to 8,192 processor cores.
UR - http://hdl.handle.net/10754/661699
UR - https://linkinghub.elsevier.com/retrieve/pii/S0021999120300863
UR - http://www.scopus.com/inward/record.url?scp=85079528855&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2020.109312
DO - 10.1016/j.jcp.2020.109312
M3 - Article
SN - 0021-9991
VL - 409
SP - 109312
JO - Journal of Computational Physics
JF - Journal of Computational Physics
ER -