Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media

Huangxin Chen, Jisheng Kou, Shuyu Sun, Tao Zhang

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

In this paper we consider fully mass-conservative numerical schemes for the simulation of incompressible and immiscible two-phase flow in porous media with capillary pressure. Compared with two kinds of conventional IMplicit Pressure Explicit Saturation (IMPES) schemes, the new schemes deserve a merit that the conservation of mass of both phases can be obtained. The total conservation equation is obtained by the summation of the discretized conservation equation for each phase. This approach is quite different from the conventional IMPES schemes. We present two kinds of fully mass-conservative IMPES schemes to solve the coupled systems for pressure, auxiliary velocity and saturation of each phase. The upwind mixed finite element methods are used to solve the pressure–velocity systems which can be decoupled, and the problems in the decoupled systems can be proved to be well-posed. Moreover, the new schemes are unbiased and the saturation of each phase can be proved to be bounds-preserving if the time step size is smaller than a certain value. The new schemes can also be applied to approximate the incompressible and immiscible two-phase flow in heterogeneous porous media with different capillarity pressures. Several interesting examples of incompressible and immiscible two-phase flow in porous media are presented to demonstrate the robustness of the new algorithms.
Original languageEnglish (US)
Pages (from-to)641-663
Number of pages23
JournalComputer Methods in Applied Mechanics and Engineering
Volume350
DOIs
StatePublished - Mar 21 2019

Fingerprint

Dive into the research topics of 'Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media'. Together they form a unique fingerprint.

Cite this