TY - JOUR
T1 - Fully Printed Dual-Layer Depolarizing Chipless RFID Tag for Wearable Applications
AU - Wang, Renqi
AU - Akhter, Zubair
AU - Li, Weiwei
AU - Shamim, Atif
N1 - KAUST Repository Item: Exported on 2023-03-20
PY - 2023/3/16
Y1 - 2023/3/16
N2 - This work presents a cross-polar dual-layer chipless radio-frequency identification (RFID) tag based on a ladder-shaped resonator design. An integrated ground plane enables direct attachment to human skin without performance deterioration. Simulations show that the ladder-shaped resonator provides several advantages over traditional L-shaped and straight resonators, including a strong cross-polar radar cross section (-23.4 dBsm), third-order harmonics, orientation insensitivity, and compact size (0.062 λ2). The effects of the ground plane shape on the surface current distribution are investigated, and a circular tag of 20 mm radius is designed using ladder resonator groups and frequency shift encoding to provide an active area of 96.45 bits/λ2 and a unit frequency of 6.03 bits/GHz. The tag substrate is three-dimensionally (3D) printed with metallic resonator patterns that are subsequently screen-printed on the substrate. The maximum read range is measured at 40 mm using a cross-shaped, dual-polarized Vivaldi antenna connected to a network analyzer. The measured characteristics in free space are in good agreement with the simulation results, and practical on-body performance tests for the manufactured prototype using simulation and direct measurements indicate that the tag performance remains stable for both free space and on-body cases. The fully printed fabrication process makes the proposed tag design suitable for mass production at a low cost.
AB - This work presents a cross-polar dual-layer chipless radio-frequency identification (RFID) tag based on a ladder-shaped resonator design. An integrated ground plane enables direct attachment to human skin without performance deterioration. Simulations show that the ladder-shaped resonator provides several advantages over traditional L-shaped and straight resonators, including a strong cross-polar radar cross section (-23.4 dBsm), third-order harmonics, orientation insensitivity, and compact size (0.062 λ2). The effects of the ground plane shape on the surface current distribution are investigated, and a circular tag of 20 mm radius is designed using ladder resonator groups and frequency shift encoding to provide an active area of 96.45 bits/λ2 and a unit frequency of 6.03 bits/GHz. The tag substrate is three-dimensionally (3D) printed with metallic resonator patterns that are subsequently screen-printed on the substrate. The maximum read range is measured at 40 mm using a cross-shaped, dual-polarized Vivaldi antenna connected to a network analyzer. The measured characteristics in free space are in good agreement with the simulation results, and practical on-body performance tests for the manufactured prototype using simulation and direct measurements indicate that the tag performance remains stable for both free space and on-body cases. The fully printed fabrication process makes the proposed tag design suitable for mass production at a low cost.
UR - http://hdl.handle.net/10754/690415
UR - https://ieeexplore.ieee.org/document/10073581/
U2 - 10.1109/jrfid.2023.3257161
DO - 10.1109/jrfid.2023.3257161
M3 - Article
SN - 2469-7281
SP - 1
EP - 1
JO - IEEE Journal of Radio Frequency Identification
JF - IEEE Journal of Radio Frequency Identification
ER -