TY - JOUR
T1 - Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis
AU - Zeitelhofer, Manuel
AU - Adzemovic, Milena Z.
AU - Gomez-Cabrero, David
AU - Bergman, Petra
AU - Hochmeister, Sonja
AU - N'diaye, Marie
AU - Paulson, Atul
AU - Ruhrmann, Sabrina
AU - Almgren, Malin
AU - Tegner, Jesper
AU - Ekström, Tomas J.
AU - Guerreiro-Cacais, André Ortlieb
AU - Jagodic, Maja
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study was supported by the Swedish Research Council (M.J. and J.N.T.); the Swedish Association for Persons with Neurological Disabilities (M.J.); the Swedish Brain Foundation (M.J. and J.N.T.); the Swedish Medical Society (M.J.); the Petrus and Augusta Hedlunds Foundation (M.J.); Karolinska Institutet funds (to M.J. and S.R.); AFA Insurance (T.J.E. and J.N.T.); Wenner-Gren Foundations Grant (to M.Z.); and Biogen Idec Grant (to M.Z.A.).
PY - 2017/2/14
Y1 - 2017/2/14
N2 - Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.
AB - Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.
UR - http://hdl.handle.net/10754/623186
UR - http://www.pnas.org/content/early/2017/02/13/1615783114
UR - http://www.scopus.com/inward/record.url?scp=85014185750&partnerID=8YFLogxK
U2 - 10.1073/pnas.1615783114
DO - 10.1073/pnas.1615783114
M3 - Article
C2 - 28196884
SN - 0027-8424
VL - 114
SP - E1678-E1687
JO - Proceedings of the National Academy of Sciences
JF - Proceedings of the National Academy of Sciences
IS - 9
ER -