TY - JOUR
T1 - Functional group introduction and aromatic unit variation in a set of π-conjugated macrocycles: Revealing the central role of local and global aromaticity
AU - Rimmele, Martina
AU - Nogala, Wojciech
AU - Seif-Eddine, Maryam
AU - Roessler, Maxie M.
AU - Heeney, Martin
AU - Plasser, Felix
AU - Glöcklhofer, Florian
N1 - Generated from Scopus record by KAUST IRTS on 2023-02-14
PY - 2021/9/7
Y1 - 2021/9/7
N2 - π-Conjugated macrocycles are molecules with unique properties that are increasingly exploited for applications and the question of whether they can sustain global aromatic or antiaromatic ring currents is particularly intriguing. However, there are only a small number of experimental studies that investigate how the properties of π-conjugated macrocycles evolve with systematic structural changes. Here, we present such a systematic experimental study of a set of [2.2.2.2]cyclophanetetraenes, all with formally Hückel antiaromatic ground states, and combine it with an in-depth computational analysis. The study reveals the central role of local and global aromaticity for rationalizing the observed optoelectronic properties, ranging from extremely large Stokes shifts of up to 1.6 eV to reversible fourfold reduction, a highly useful feature for charge storage/accumulation applications. A recently developed method for the visualization of chemical shielding tensors (VIST) is applied to provide unique insight into local and global ring currents occurring in different planes along the macrocycle. Conformational changes as a result of the structural variations can further explain some of the observations. The study contributes to the development of structure-property relationships and molecular design guidelines and will help to understand, rationalize, and predict the properties of other π-conjugated macrocycles. It will also assist in the design of macrocycle-based supramolecular elements with defined properties.
AB - π-Conjugated macrocycles are molecules with unique properties that are increasingly exploited for applications and the question of whether they can sustain global aromatic or antiaromatic ring currents is particularly intriguing. However, there are only a small number of experimental studies that investigate how the properties of π-conjugated macrocycles evolve with systematic structural changes. Here, we present such a systematic experimental study of a set of [2.2.2.2]cyclophanetetraenes, all with formally Hückel antiaromatic ground states, and combine it with an in-depth computational analysis. The study reveals the central role of local and global aromaticity for rationalizing the observed optoelectronic properties, ranging from extremely large Stokes shifts of up to 1.6 eV to reversible fourfold reduction, a highly useful feature for charge storage/accumulation applications. A recently developed method for the visualization of chemical shielding tensors (VIST) is applied to provide unique insight into local and global ring currents occurring in different planes along the macrocycle. Conformational changes as a result of the structural variations can further explain some of the observations. The study contributes to the development of structure-property relationships and molecular design guidelines and will help to understand, rationalize, and predict the properties of other π-conjugated macrocycles. It will also assist in the design of macrocycle-based supramolecular elements with defined properties.
UR - http://xlink.rsc.org/?DOI=D1QO00901J
UR - http://www.scopus.com/inward/record.url?scp=85113731566&partnerID=8YFLogxK
U2 - 10.1039/d1qo00901j
DO - 10.1039/d1qo00901j
M3 - Article
SN - 2052-4129
VL - 8
SP - 4730
EP - 4745
JO - Organic Chemistry Frontiers
JF - Organic Chemistry Frontiers
IS - 17
ER -