TY - CHAP
T1 - Fundamental Aspects and Applications of Ultrasonically Induced Cavitation in Heavy Fuel Oil with a Focus on Deasphalting, Emulsions, and Oxidative Desulfurization
AU - Guida, Paolo
AU - Jameel, Abdul Gani Abdul
AU - Saxena, Saumitra
AU - Roberts, William L.
N1 - KAUST Repository Item: Exported on 2021-05-04
PY - 2021/4/29
Y1 - 2021/4/29
N2 - The combustion of hydrocarbons will continue to feed the planet’s growing demand for mobility and power generation over the next several decades, shifting to lower-value, more-difficult-to-burn fuels while at the same time meeting more stringent emissions regulations. These lower-value fuels include heavy fuel oils and vacuum residuals, which are difficult to burn cleanly due to the presence of asphaltenes, the insoluble fractions with exceptionally high molecular weight that are found in high concentrations in crude oils. In particular, heavy fuel oils (HFO) are widely used in marine and power-generation sectors, and the International Maritime Organization’s (IMO2020) promulgation has redistributed the HFO demand and pushed the world’s economy into a new paradigm. We seek solutions for such a complex oil industry paradigm by utilizing some state-of-the-art technologies like ultrasonically induced cavitation (UIC). In the current chapter, we have discussed a roadmap for use of “bottom-of-barrel fuel” with high asphaltene content via UIC-based fuel upgrading, desulfurization, and direct use (emulsions). We expect that a strategy of using UIC for asphaltene modification and water-in-HFO-enabled microexplosions will significantly impact the combustion of HFO. Furthermore, ultrasonic-assisted oxidative desulfurization can be utilized to remove undesired sulfur to meet marine or power sector requirements. Deasphalting, emulsions, and desulfurization solutions could be applied in a multiplicity of combustion-driven energy conversion platforms, including compression ignition engines, gas turbines, and boilers.
AB - The combustion of hydrocarbons will continue to feed the planet’s growing demand for mobility and power generation over the next several decades, shifting to lower-value, more-difficult-to-burn fuels while at the same time meeting more stringent emissions regulations. These lower-value fuels include heavy fuel oils and vacuum residuals, which are difficult to burn cleanly due to the presence of asphaltenes, the insoluble fractions with exceptionally high molecular weight that are found in high concentrations in crude oils. In particular, heavy fuel oils (HFO) are widely used in marine and power-generation sectors, and the International Maritime Organization’s (IMO2020) promulgation has redistributed the HFO demand and pushed the world’s economy into a new paradigm. We seek solutions for such a complex oil industry paradigm by utilizing some state-of-the-art technologies like ultrasonically induced cavitation (UIC). In the current chapter, we have discussed a roadmap for use of “bottom-of-barrel fuel” with high asphaltene content via UIC-based fuel upgrading, desulfurization, and direct use (emulsions). We expect that a strategy of using UIC for asphaltene modification and water-in-HFO-enabled microexplosions will significantly impact the combustion of HFO. Furthermore, ultrasonic-assisted oxidative desulfurization can be utilized to remove undesired sulfur to meet marine or power sector requirements. Deasphalting, emulsions, and desulfurization solutions could be applied in a multiplicity of combustion-driven energy conversion platforms, including compression ignition engines, gas turbines, and boilers.
UR - http://hdl.handle.net/10754/669065
UR - https://pubs.acs.org/doi/abs/10.1021/bk-2021-1379.ch010
U2 - 10.1021/bk-2021-1379.ch010
DO - 10.1021/bk-2021-1379.ch010
M3 - Chapter
SN - 9780841298422
SP - 233
EP - 293
BT - Catalytic and Noncatalytic Upgrading of Oils
PB - American Chemical Society
ER -