TY - JOUR
T1 - Gamma-valerolactone (GVL) as a biofuel: Investigation of GVL thermal decomposition and GVL + OH reaction
AU - Liu, Dapeng
AU - Farooq, Aamir
N1 - KAUST Repository Item: Exported on 2023-05-02
Acknowledgements: Research reported in this publication was funded by King Abdullah University of Science and Technology (KAUST).
PY - 2023/4/20
Y1 - 2023/4/20
N2 - Recent works have highlighted the potential of lignocellulosic-derived γ-valerolactone (GVL) as a promising biofuel or a fuel additive. Its detailed chemistry is, however, not yet well-understood. In this work, we present the first high-temperature measurements of GVL + OH reaction behind reflected shock waves over 990–1294 K and pressures ∼ 1.2 bar. Around 990 K, our rate coefficients are ∼3 times faster than the average room-temperature determination. Our measured OH + GVL rate coefficients may be given as (unit: cm3molecule−1s−1): [Formula presented] We also conducted the first direct measurements of GVL thermal decomposition over 1214–1427 K and pressures ∼ 1.4 bar. GVL decomposition rate coefficients exhibit a similar slope to its acyclic counterpart, ethyl propionate, but GVL decomposes ∼80–120 times slower than ethyl propionate. Our determined GVL thermal decomposition rate coefficients may be expressed as (unit of s−1): [Formula presented] Our experimental work represents the first quantitative measurements of the reactions of the lactone family. Both reactions of the lactone family studied here proceeded slower than the normal-chain counterparts which affirms that ring constraints must be considered in rate coefficient analogies between normal-chain and cyclic molecules.
AB - Recent works have highlighted the potential of lignocellulosic-derived γ-valerolactone (GVL) as a promising biofuel or a fuel additive. Its detailed chemistry is, however, not yet well-understood. In this work, we present the first high-temperature measurements of GVL + OH reaction behind reflected shock waves over 990–1294 K and pressures ∼ 1.2 bar. Around 990 K, our rate coefficients are ∼3 times faster than the average room-temperature determination. Our measured OH + GVL rate coefficients may be given as (unit: cm3molecule−1s−1): [Formula presented] We also conducted the first direct measurements of GVL thermal decomposition over 1214–1427 K and pressures ∼ 1.4 bar. GVL decomposition rate coefficients exhibit a similar slope to its acyclic counterpart, ethyl propionate, but GVL decomposes ∼80–120 times slower than ethyl propionate. Our determined GVL thermal decomposition rate coefficients may be expressed as (unit of s−1): [Formula presented] Our experimental work represents the first quantitative measurements of the reactions of the lactone family. Both reactions of the lactone family studied here proceeded slower than the normal-chain counterparts which affirms that ring constraints must be considered in rate coefficient analogies between normal-chain and cyclic molecules.
UR - http://hdl.handle.net/10754/691381
UR - https://linkinghub.elsevier.com/retrieve/pii/S0010218023001554
UR - http://www.scopus.com/inward/record.url?scp=85152896579&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2023.112771
DO - 10.1016/j.combustflame.2023.112771
M3 - Article
SN - 0010-2180
VL - 253
SP - 112771
JO - Combustion and Flame
JF - Combustion and Flame
ER -