Garage-Fabricated, Ultrasensitive Capacitive Humidity Sensor Based on Tissue Paper

Asad Ullah, Muhammad Hamza Zulfiqar, Muhammad Atif Khan, Muhammad Ali, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


The role of humidity sensors in different industries and field applications, such as agriculture, food monitoring, biomedical equipment, heating, and ventilation, is well known. However, most commercially available humidity sensors are based on polymers or electronic materials that are not degradable and thus contribute to electronic waste. Here, we report a low-cost, flexible, easy-to-fabricate, and eco-friendly parallel-plate capacitive humidity sensor for field applications. The sensor is fabricated from copper tape and tissue paper, where copper tape is used to create the plates of the capacitor, and tissue paper is used as a dielectric sensing layer. Along with the low cost, the high sensitivity, better response and recovery times, stability, and repeatability make this sensor unique. The sensor was tested for relative humidity (RH), ranging from 40% to 99%, and the capacitance varied linearly with RH from 240 pF to 720 pF, as measured by an Arduino. The response time of the sensor is ~1.5 s, and the recovery time is ~2.2 s. The experiment was performed 4-5 times on the same sensor, and repeatable results were achieved with an accuracy of ±0.1%. Furthermore, the sensor exhibits a stable response when tested at different temperatures. Due to the above advantages, the presented sensor can find ready applications in different areas.

Original languageEnglish (US)
Article number7885
JournalSensors (Basel, Switzerland)
Issue number20
StatePublished - Oct 17 2022


  • flexible electronics
  • humidity sensors
  • parallel-plate capacitive sensors
  • relative humidity

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering


Dive into the research topics of 'Garage-Fabricated, Ultrasensitive Capacitive Humidity Sensor Based on Tissue Paper'. Together they form a unique fingerprint.

Cite this