Generalized Implicit Follow-The-Regularized-Leader

Keyi Chen*, Francesco Orabona*

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

Abstract

We propose a new class of online learning algorithms, generalized implicit Follow-The-Regularized-Leader (FTRL), that expands the scope of FTRL framework. Generalized implicit FTRL can recover known algorithms, such as FTRL with linearized losses and implicit FTRL, and it allows the design of new update rules, as extensions of aProx and Mirror-Prox to FTRL. Our theory is constructive in the sense that it provides a simple unifying framework to design updates that directly improve the worst-case upper bound on the regret. The key idea is substituting the linearization of the losses with a Fenchel-Young inequality. We show the flexibility of the framework by proving that some known algorithms, like the Mirror-Prox updates, are instantiations of the generalized implicit FTRL. Finally, the new framework allows us to recover the temporal variation bound of implicit OMD, with the same computational complexity.

Original languageEnglish (US)
Pages4330-4391
Number of pages62
StatePublished - 2023
Event40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States
Duration: Jul 23 2023Jul 29 2023

Conference

Conference40th International Conference on Machine Learning, ICML 2023
Country/TerritoryUnited States
CityHonolulu
Period07/23/2307/29/23

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Generalized Implicit Follow-The-Regularized-Leader'. Together they form a unique fingerprint.

Cite this