TY - JOUR
T1 - Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants
AU - Chen, Hao
AU - Saksa, Kristen
AU - Zhao, Feiyi
AU - Qiu, Joyce
AU - Xiong, Liming
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We thank Drs Leslie Hicks and Sophie Alvarez at the Danforth Plant Science Center for helping with amino acid quantification, and Dr Jian-Kang Zhu for critical reading of the manuscript. K. S. was supported by a National Science Foundation Research Experience for Undergraduates internship (grant number 0521250 to L. X). This study was supported by United States Department of Agriculture National Research Initiative competitive grant number 2004-02111 and the Monsanto Company (to L. X.).
PY - 2010/8/12
Y1 - 2010/8/12
N2 - The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.
AB - The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.
UR - http://hdl.handle.net/10754/561514
UR - http://doi.wiley.com/10.1111/j.1365-313X.2010.04261.x
UR - http://www.scopus.com/inward/record.url?scp=77955690678&partnerID=8YFLogxK
U2 - 10.1111/j.1365-313X.2010.04261.x
DO - 10.1111/j.1365-313X.2010.04261.x
M3 - Article
C2 - 20497381
SN - 0960-7412
VL - 63
SP - 573
EP - 583
JO - The Plant Journal
JF - The Plant Journal
IS - 4
ER -