GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl Vondrick, Bernard Ghanem, Andrea Vedaldi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Advancements in 3D Gaussian Splatting have significantly accelerated 3D reconstruction and generation. However, it may require a large number of Gaussians, which creates a substantial memory footprint. This paper introduces GES (Generalized Exponential Splatting), a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes, requiring far fewer parti-cles to represent a scene and thus significantly outperforming Gaussian Splatting methods in efficiency with a plug-and-play replacement ability for Gaussian-based utilities. GES is validated theoretically and empirically in both principled 1D setup and realistic 3D scenes. It is shown to represent signals with sharp edges more accurately, which are typically challenging for Gaussians due to their inherent low-pass characteristics. Our empirical analysis demonstrates that GEF outperforms Gaussians in fitting natural-occurring signals (e.g. squares, triangles, parabolic signals), thereby reducing the need for extensive splitting operations that increase the memory footprint of Gaussian Splatting. With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view syn-thesis benchmarks while requiring less than half the memory storage of Gaussian Splatting and increasing the rendering speed by up to 39%. The code is available on the project website https://abdullahamdi.com/ges.

Original languageEnglish (US)
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages19812-19822
Number of pages11
ISBN (Electronic)9798350353006
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period06/16/2406/22/24

Keywords

  • 3D generation
  • Gaussian Splatting
  • NeRFs
  • Radiance Fields

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering'. Together they form a unique fingerprint.

Cite this