Abstract
We report on deep-to-near-UV transient absorption spectra of core-shell Au/SiO2Au/SiO2 and Au/TiO2Au/TiO2 nanoparticles (NPs) excited at the surface plasmon resonance of the Au core, and of UV-excited bare anatase TiO2TiO2 NPs. The bleaching of the first excitonic transition of anatase TiO2TiO2 at ∼3.8 eV∼3.8 eV is a signature of the presence of electrons/holes in the conduction band (CB)/valence band (VB) of the material. We find that while in bare anatase TiO2TiO2 NPs, two-photon excitation does not occur up to the highest used fluences (1.34 mJ/cm21.34 mJ/cm2), it takes place in the TiO2TiO2 shell at moderate fluences (0.18 mJ/cm20.18 mJ/cm2) in Au/TiO2Au/TiO2 core-shell NPs, as a result of an enhancement due to the plasmon resonance. We estimate the enhancement factor to be of the order of ∼108–109∼108–109. Remarkably, we observe that the bleach of the 3.8 eV band of TiO2TiO2 lives significantly longer than in bare TiO2TiO2, suggesting that the excess electrons/holes in the conduction/valence band are stored longer in this material.
Original language | English (US) |
---|---|
Pages (from-to) | 1303-1313 |
Number of pages | 11 |
Journal | Photonics Research |
Volume | 11 |
Issue number | 7 |
DOIs | |
State | Published - Jun 28 2023 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics