TY - JOUR
T1 - Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction
AU - Said-Houari, Belkacem
AU - Nascimento, Flávio A Falcão
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Doctorate student by State University of Maringa, partially supported by a grant of CNPq, BrazilThe authors thanks Prof. Marcelo Moreira Cavalcanti for many helpful comments, which improve the first version of this paper. Moreover, the first author thanks KAUST for its support.
PY - 2012/9
Y1 - 2012/9
N2 - The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
AB - The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.
UR - http://hdl.handle.net/10754/562313
UR - http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=7643
UR - http://www.scopus.com/inward/record.url?scp=84873307030&partnerID=8YFLogxK
U2 - 10.3934/cpaa.2013.12.375
DO - 10.3934/cpaa.2013.12.375
M3 - Article
SN - 1534-0392
VL - 12
SP - 375
EP - 403
JO - Communications on Pure and Applied Analysis
JF - Communications on Pure and Applied Analysis
IS - 1
ER -