Abstract
The kinematics of a hovering wing are optimized by combining the 2-d unsteady vortex lattice method with a hybrid of global and local optimization algorithms. The objective is to minimize the required aerodynamic power under a lift constraint. The hybrid optimization is used to efficiently navigate the complex design space due to wing-wake interference present in hovering aerodynamics. The flapping wing is chosen so that its chord length and flapping frequency match the morphological and flight properties of two insects with different masses. The results suggest that imposing a delay between the different oscillatory motions defining the flapping kinematics, and controlling the way through which the wing rotates at the end of each half stroke can improve aerodynamic power under a lift constraint. Furthermore, our optimization analysis identified optimal kinematics that agree fairly well with observed insect kinematics, as well as previously published numerical results.
Original language | English (US) |
---|---|
Pages (from-to) | 109-126 |
Number of pages | 18 |
Journal | International Journal of Micro Air Vehicles |
Volume | 5 |
Issue number | 2 |
DOIs | |
State | Published - Jun 2013 |
ASJC Scopus subject areas
- Aerospace Engineering