Abstract
A monocarboxylic substituted polychlorotriphenylmethyl radical (PTMCOOH) has been grafted onto a COOH-functionalized SAM (mercaptohexadecanoic acid, MHDA SAM), using copper (II) metal ions as linkers between the carboxyl groups of the SAM and the ligand. The metal-radical adlayer has been characterized thoroughly using different surface analysis techniques, such as contact angle, IRRAS, XPS, SPR, ToF-SIMS, SFM, and NEXAFS. The magnetic character was confirmed by EPR. The density of unoccupied states was investigated using X-ray absorption spectroscopy. A low-energy peak in the NEXAFS spectrum directly revealed the presence of partially occupied electronic levels, thus proving the open-shell character of the grafted ligands. SEM measurements on a laterally patterned sample prepared by μCP of MHDA in a matrix of hexadecane thiolate (a CH3-terminated SAM) was performed to demonstrate that the metal-assisted anchoring of the open-shell ligand occurs selectively on the COOH terminated SAM. These results represent an easy and new approach to anchor organic radicals on surfaces and constitute a first step toward the growth of magnetic metal-organic radical-based frameworks on solid substrates.
Original language | English (US) |
---|---|
Pages (from-to) | 6640-6648 |
Number of pages | 9 |
Journal | LANGMUIR |
Volume | 24 |
Issue number | 13 |
DOIs | |
State | Published - Jul 1 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry