TY - JOUR
T1 - Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high- ZT Thermoelectric devices
AU - Juang, Zhen-Yu
AU - Tseng, Chien-Chih
AU - Shi, Yumeng
AU - Hsieh, Wen-Pin
AU - Ryuzaki, Sou
AU - Saito, Noboru
AU - Hsiung, Chia-En
AU - Chang, Wen-Hao
AU - Hernandez, Yenny
AU - Han, Yu
AU - Tamada, Kaoru
AU - Li, Lain-Jong
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by the Ministry of Science and Technology of Taiwan under Contract No. MOST 104 – 2112 – M – 006 – 001, MOST 103–2112-M-001 −001 -MY3 and MOST 104–2112-M-001 −045. LJL, CCT, YS acknowledge the support from King Abdullah University of Science and Technology. Y.S. acknowledges the support from the Thousand Young Talents Program of China, the National Natural Science Foundation of China (Grant No. 51602200) and Educational Commission of Guangdong Province (Grant No. 2016KZDXM008). This project was supported by Shenzhen Peacock Plan (Grant No. KQTD2016053112042971).
PY - 2017/6/3
Y1 - 2017/6/3
N2 - Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.
AB - Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.
UR - http://hdl.handle.net/10754/624034
UR - http://www.sciencedirect.com/science/article/pii/S2211285517303579
UR - http://www.scopus.com/inward/record.url?scp=85020630023&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2017.06.004
DO - 10.1016/j.nanoen.2017.06.004
M3 - Article
SN - 2211-2855
VL - 38
SP - 385
EP - 391
JO - Nano Energy
JF - Nano Energy
ER -