TY - JOUR
T1 - Green Tethered UAVs for EMF-Aware Cellular Networks
AU - Lou, Zhengying
AU - Elzanaty, Ahmed
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2021-08-07
PY - 2021
Y1 - 2021
N2 - A prevalent theory circulating among the nonscientific community is that the intensive deployment of base stations over the territory significantly increases the level of electromagnetic field (EMF) exposure and affects population health. To alleviate this concern, in this work, we propose a network architecture that introduces tethered unmanned aerial vehicles (TUAVs) carrying green antennas to minimize the EMF exposure while guaranteeing a high data rate for users. In particular, each TUAV can attach itself to one of the possible ground stations at the top of some buildings. The location of the TUAVs, transmit power of user equipment, and association policy are optimized to minimize the EMF exposure. Unfortunately, the problem turns out to be a mixed integer non-linear programming (MINLP), which is non-deterministic polynomial-time (NP) hard. We propose an efficient low-complexity algorithm composed of three submodules. Firstly, we propose an algorithm based on the greedy principle to determine the optimal association matrix between the users and base stations. Then, we offer two approaches, modified K-mean and shrink and realign (SR) process, to associate each TUAV with a ground station. Also, we put forward two algorithms based on the golden search and SR process to adjust the TUAV’s position within the hovering area over the building. Finally, we consider the dual problem that maximizes the sum rate while keeping the exposure below a predefined value, such as the level enforced by the regulation. Numerical results show that TUAVs with green antennas can effectively mitigate the EMF exposure by more than 20% compared to fixed green small cells while achieving a higher data rate.
AB - A prevalent theory circulating among the nonscientific community is that the intensive deployment of base stations over the territory significantly increases the level of electromagnetic field (EMF) exposure and affects population health. To alleviate this concern, in this work, we propose a network architecture that introduces tethered unmanned aerial vehicles (TUAVs) carrying green antennas to minimize the EMF exposure while guaranteeing a high data rate for users. In particular, each TUAV can attach itself to one of the possible ground stations at the top of some buildings. The location of the TUAVs, transmit power of user equipment, and association policy are optimized to minimize the EMF exposure. Unfortunately, the problem turns out to be a mixed integer non-linear programming (MINLP), which is non-deterministic polynomial-time (NP) hard. We propose an efficient low-complexity algorithm composed of three submodules. Firstly, we propose an algorithm based on the greedy principle to determine the optimal association matrix between the users and base stations. Then, we offer two approaches, modified K-mean and shrink and realign (SR) process, to associate each TUAV with a ground station. Also, we put forward two algorithms based on the golden search and SR process to adjust the TUAV’s position within the hovering area over the building. Finally, we consider the dual problem that maximizes the sum rate while keeping the exposure below a predefined value, such as the level enforced by the regulation. Numerical results show that TUAVs with green antennas can effectively mitigate the EMF exposure by more than 20% compared to fixed green small cells while achieving a higher data rate.
UR - http://hdl.handle.net/10754/669410
UR - https://ieeexplore.ieee.org/document/9504595/
U2 - 10.1109/TGCN.2021.3102086
DO - 10.1109/TGCN.2021.3102086
M3 - Article
SN - 2473-2400
SP - 1
EP - 1
JO - IEEE Transactions on Green Communications and Networking
JF - IEEE Transactions on Green Communications and Networking
ER -