TY - JOUR
T1 - Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system
AU - Bani-Melhem, Khalid
AU - Smith, Edward
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): UK-C0015
Acknowledgements: This publication is based on work supported by Award No. UK-C0015, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/8
Y1 - 2012/8
N2 - This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.
AB - This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.
UR - http://hdl.handle.net/10754/598434
UR - https://linkinghub.elsevier.com/retrieve/pii/S1385894712006377
UR - http://www.scopus.com/inward/record.url?scp=84864322505&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2012.05.065
DO - 10.1016/j.cej.2012.05.065
M3 - Article
SN - 1385-8947
VL - 198-199
SP - 201
EP - 210
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -