TY - JOUR
T1 - >10% Efficiency Polymer:Fullerene Solar Cells with Polyacetylene-Based Polyelectrolyte Interlayers
AU - Nam, Sungho
AU - Seo, Jooyeok
AU - Han, Hyemi
AU - Kim, Hwajeong
AU - Hahm, Suk Gyu
AU - Ree, Moonhor
AU - Gal, Yeong Soon
AU - Anthopoulos, Thomas D.
AU - Bradley, Donal D.C.
AU - Kim, Youngkyoo
N1 - Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2016/12/7
Y1 - 2016/12/7
N2 - Polymer solar cells have gained great attention due to their tremendous potential for applications in light-weight, large-area, and flexible photovoltaic modules fabricated via continuous roll-to-roll processes. Despite the significant progress, however, their efficiency and operating stability are still inadequate for commercial applications. Interfacial engineering of the electron-collecting buffer layer and the organic photoactive layer through the use of organic dipole interlayers, has been proposed as a simple and scalable way to improve the overall solar cell performance. Here, highly efficient inverted polymer:fullerene solar cells have been successfully developed with a power conversion efficiency of over 10%. The bulk heterojunction layer consists of the poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), as the electron donor and electron acceptor, respectively. Key to this success is the insertion of the ionic polyacetylene-based conjugated polymer, poly(N-dodecyl-2-ethynylpyridinium bromide), as an interfacial dipole layer. The latter is shown to lower the work function of the electron transporting zinc oxide layer and increase the built-in potential, consequently facilitating efficient charge transport/extraction. Optimized solar cells exhibit power conversion efficiency values exceeding 10% while their operating stability under continuous solar-simulated illumination is significantly enhanced when ultraviolet light is effectively blocked using a suitable optical filter.
AB - Polymer solar cells have gained great attention due to their tremendous potential for applications in light-weight, large-area, and flexible photovoltaic modules fabricated via continuous roll-to-roll processes. Despite the significant progress, however, their efficiency and operating stability are still inadequate for commercial applications. Interfacial engineering of the electron-collecting buffer layer and the organic photoactive layer through the use of organic dipole interlayers, has been proposed as a simple and scalable way to improve the overall solar cell performance. Here, highly efficient inverted polymer:fullerene solar cells have been successfully developed with a power conversion efficiency of over 10%. The bulk heterojunction layer consists of the poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and the [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), as the electron donor and electron acceptor, respectively. Key to this success is the insertion of the ionic polyacetylene-based conjugated polymer, poly(N-dodecyl-2-ethynylpyridinium bromide), as an interfacial dipole layer. The latter is shown to lower the work function of the electron transporting zinc oxide layer and increase the built-in potential, consequently facilitating efficient charge transport/extraction. Optimized solar cells exhibit power conversion efficiency values exceeding 10% while their operating stability under continuous solar-simulated illumination is significantly enhanced when ultraviolet light is effectively blocked using a suitable optical filter.
KW - interlayers
KW - operating stability
KW - polyacetylene
KW - polyelectrolytes
KW - polymer:fullerene solar cell
UR - http://www.scopus.com/inward/record.url?scp=84995873399&partnerID=8YFLogxK
U2 - 10.1002/admi.201600415
DO - 10.1002/admi.201600415
M3 - Article
AN - SCOPUS:84995873399
SN - 2196-7350
VL - 3
JO - Advanced Materials Interfaces
JF - Advanced Materials Interfaces
IS - 23
M1 - 1600415
ER -