Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene)

Mohamed Alhabeb, Kathleen Maleski, Babak Anasori, Pavel Lelyukh, Leah Clark, Saleesha Sin, Yury Gogotsi

Research output: Contribution to journalArticlepeer-review

3618 Scopus citations

Abstract

Two-dimensional (2D) transition metal carbides, carbonitrides and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray or dip coating, painted or printed, or fabricated in a variety of ways. Due to this promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality of the 2D flakes produced. Here we describe the experimental methods and best practices we use to synthesize the most studied MXene, titanium carbide (Ti3C2Tx), using different etchants and delamination methods. We also explain effects of synthesis parameters on the size and quality of Ti3C2Tx and suggest the optimal processes for the desired application.
Original languageEnglish (US)
Pages (from-to)7633-7644
Number of pages12
JournalChemistry of Materials
Volume29
Issue number18
DOIs
StatePublished - Sep 6 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene)'. Together they form a unique fingerprint.

Cite this