TY - JOUR
T1 - H-Abstraction by OH from Large Branched Alkanes: Overall Rate Measurements and Site-Specific Tertiary Rate Calculations
AU - Liu, Dapeng
AU - KHALED, Fethi
AU - Giri, Binod
AU - Assaf, Emmanuel
AU - Fittschen, Christa
AU - Farooq, Aamir
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: We acknowledge the funding support from Saudi Aramco under the FUELCOM program and by King Abdullah University of Science and Technology (KAUST). Financial support by the French ANR agency under contract no. ANR-11-LabEx-0005-01 CaPPA (Chemical and Physical Properties of the Atmosphere) is acknowledged.
PY - 2017/1/27
Y1 - 2017/1/27
N2 - Reaction rate coefficients for the reaction of hydroxyl (OH) radicals with nine large branched alkanes (i.e., 2-methyl-3-ethyl-pentane, 2,3-dimethyl-pentane, 2,2,3-trimethylbutane, 2,2,3-trimethyl-pentane, 2,3,4-trimethyl-pentane, 3-ethyl-pentane, 2,2,3,4-tetramethyl-pentane, 2,2-dimethyl-3-ethyl-pentane, and 2,4-dimethyl-3-ethyl-pentane) are measured at high temperatures (900-1300 K) using a shock tube and narrow-line-width OH absorption diagnostic in the UV region. In addition, room-temperature measurements of six out of these nine rate coefficients are performed in a photolysis cell using high repetition laser-induced fluorescence of OH radicals. Our experimental results are combined with previous literature measurements to obtain three-parameter Arrhenius expressions valid over a wide temperature range (300-1300 K). The rate coefficients are analyzed using the next-nearest-neighbor (N-N-N) methodology to derive nine tertiary (T003, T012, T013, T022, T023, T111, T112, T113, and T122) site-specific rate coefficients for the abstraction of H atoms by OH radicals from branched alkanes. Derived Arrhenius expressions, valid over 950-1300 K, are given as (the subscripts denote the number of carbon atoms connected to the next-nearest-neighbor carbon): T003 = 1.80 × 10-10 exp(-2971 K/T) cm3 molecule-1 s-1; T012 = 9.36 × 10-11 exp(-3024 K/T) cm3 molecule-1 s-1; T013 = 4.40 × 10-10 exp(-4162 K/T) cm3 molecule-1 s-1; T022 = 1.47 × 10-10 exp(-3587 K/T) cm3 molecule-1 s-1; T023 = 6.06 × 10-11 exp(-3010 K/T) cm3 molecule-1 s-1; T111 = 3.98 × 10-11 exp(-1617 K/T) cm3 molecule-1 s-1; T112 = 9.08 × 10-12 exp(-3661 K/T) cm3 molecule-1 s-1; T113 = 6.74 × 10-9 exp(-7547 K/T) cm3 molecule-1 s-1; T122 = 3.47 × 10-11 exp(-1802 K/T) cm3 molecule-1 s-1.
AB - Reaction rate coefficients for the reaction of hydroxyl (OH) radicals with nine large branched alkanes (i.e., 2-methyl-3-ethyl-pentane, 2,3-dimethyl-pentane, 2,2,3-trimethylbutane, 2,2,3-trimethyl-pentane, 2,3,4-trimethyl-pentane, 3-ethyl-pentane, 2,2,3,4-tetramethyl-pentane, 2,2-dimethyl-3-ethyl-pentane, and 2,4-dimethyl-3-ethyl-pentane) are measured at high temperatures (900-1300 K) using a shock tube and narrow-line-width OH absorption diagnostic in the UV region. In addition, room-temperature measurements of six out of these nine rate coefficients are performed in a photolysis cell using high repetition laser-induced fluorescence of OH radicals. Our experimental results are combined with previous literature measurements to obtain three-parameter Arrhenius expressions valid over a wide temperature range (300-1300 K). The rate coefficients are analyzed using the next-nearest-neighbor (N-N-N) methodology to derive nine tertiary (T003, T012, T013, T022, T023, T111, T112, T113, and T122) site-specific rate coefficients for the abstraction of H atoms by OH radicals from branched alkanes. Derived Arrhenius expressions, valid over 950-1300 K, are given as (the subscripts denote the number of carbon atoms connected to the next-nearest-neighbor carbon): T003 = 1.80 × 10-10 exp(-2971 K/T) cm3 molecule-1 s-1; T012 = 9.36 × 10-11 exp(-3024 K/T) cm3 molecule-1 s-1; T013 = 4.40 × 10-10 exp(-4162 K/T) cm3 molecule-1 s-1; T022 = 1.47 × 10-10 exp(-3587 K/T) cm3 molecule-1 s-1; T023 = 6.06 × 10-11 exp(-3010 K/T) cm3 molecule-1 s-1; T111 = 3.98 × 10-11 exp(-1617 K/T) cm3 molecule-1 s-1; T112 = 9.08 × 10-12 exp(-3661 K/T) cm3 molecule-1 s-1; T113 = 6.74 × 10-9 exp(-7547 K/T) cm3 molecule-1 s-1; T122 = 3.47 × 10-11 exp(-1802 K/T) cm3 molecule-1 s-1.
UR - http://hdl.handle.net/10754/622833
UR - http://pubs.acs.org/doi/full/10.1021/acs.jpca.6b10576
UR - http://www.scopus.com/inward/record.url?scp=85026839776&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.6b10576
DO - 10.1021/acs.jpca.6b10576
M3 - Article
C2 - 28071058
SN - 1089-5639
VL - 121
SP - 927
EP - 937
JO - The Journal of Physical Chemistry A
JF - The Journal of Physical Chemistry A
IS - 5
ER -