Harmonization of quality metrics and power calculation in multi-omic studies

Sonia Tarazona, Leandro Balzano-Nogueira, David Gómez-Cabrero, Andreas Schmidt, Axel Imhof, Thomas Hankemeier, Jesper Tegner, Johan A. Westerhuis, Ana Conesa

Research output: Contribution to journalArticlepeer-review

42 Scopus citations


Multi-omic studies combine measurements at different molecular levels to build comprehensive models of cellular systems. The success of a multi-omic data analysis strategy depends largely on the adoption of adequate experimental designs, and on the quality of the measurements provided by the different omic platforms. However, the field lacks a comparative description of performance parameters across omic technologies and a formulation for experimental design in multi-omic data scenarios. Here, we propose a set of harmonized Figures of Merit (FoM) as quality descriptors applicable to different omic data types. Employing this information, we formulate the MultiPower method to estimate and assess the optimal sample size in a multi-omics experiment. MultiPower supports different experimental settings, data types and sample sizes, and includes graphical for experimental design decision-making. MultiPower is complemented with MultiML, an algorithm to estimate sample size for machine learning classification problems based on multi-omic data.
Original languageEnglish (US)
JournalNature Communications
Issue number1
StatePublished - Jun 18 2020


Dive into the research topics of 'Harmonization of quality metrics and power calculation in multi-omic studies'. Together they form a unique fingerprint.

Cite this