High-Content Metallic 1T Phase in MoS2-Based Electrocatalyst for Efficient Hydrogen Evolution

Liang Cai, Weiren Cheng, Tao Yao, Yuanyuan Huang, Fumin Tang, Qinghua Liu*, Wei Liu, Zhihu Sun, Fengchun Hu, Yong Jiang, Wensheng Yan, Shiqiang Wei

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Realizing high-efficiency hydrogen evolution in cost-effective and long-lasting electrocatalysts is critical for global production of clean and sustainable chemical fuels. Here, via modulating the metallic 1T phase in 2H MoS2 nanosheets, we greatly improved the conductivity and effective active sites for highly efficient electrocatalytic hydrogen evolution. The as-synthesized 1T-2H MoS2 electrocatalyst with a high 1T-phase content of 50% can significantly increase the charge concentration by an order of magnitude and triple the effective active surface sites, successfully boosting the hydrogen evolution reaction (HER) at a quite low overpotential of 126 mV at 10 mA/cm2 and a small Tafel slope of 35 mV/dec. Ultraviolet photoelectron spectroscopy and electrochemical characterization reveal that the valence band edges of 1T-2H MoS2 are upshifted by 0.15-0.36 eV, which obviously enhances the charge transfer ability of the surface active sites in the basal plane of MoS2 for high HER performance. (Chemical Equation Presented).

Original languageEnglish (US)
Pages (from-to)15071-15077
Number of pages7
JournalJOURNAL OF PHYSICAL CHEMISTRY C
Volume121
Issue number28
DOIs
StatePublished - Jul 20 2017

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'High-Content Metallic 1T Phase in MoS2-Based Electrocatalyst for Efficient Hydrogen Evolution'. Together they form a unique fingerprint.

Cite this