High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape

Fabian Schmidt, Yiska Weisblum, Magdalena Rutkowska, Daniel Poston, Justin Da Silva, Fengwen Zhang, Eva Bednarski, Alice Cho, Dennis J. Schaefer-Babajew, Christian Gaebler, Marina Caskey, Michel C. Nussenzweig, Theodora Hatziioannou, Paul D. Bieniasz

Research output: Contribution to journalArticlepeer-review

130 Scopus citations

Abstract

The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in individuals who are SARS-CoV-2 convalescent and vaccinated are key determinants of neutralization breadth and the genetic barrier to viral escape1–4. Using HIV-1 pseudotypes and plasma selection experiments with vesicular stomatitis virus/SARS-CoV-2 chimaeras5, here we show that multiple neutralizing epitopes, within and outside the receptor-binding domain, are variably targeted by human polyclonal antibodies. Antibody targets coincide with spike sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic ‘polymutant’ spike protein pseudotypes that resisted polyclonal antibody neutralization to a similar degree as circulating variants of concern. By aggregating variant of concern-associated and antibody-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in the SARS-CoV-2 spike protein are sufficient to generate pseudotypes with near-complete resistance to the polyclonal neutralizing antibodies generated by individuals who are convalescent or recipients who received an mRNA vaccine. However, plasma from individuals who had been infected and subsequently received mRNA vaccination neutralized pseudotypes bearing this highly resistant SARS-CoV-2 polymutant spike, or diverse sarbecovirus spike proteins. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against potential future sarbecovirus pandemics.
Original languageEnglish (US)
Pages (from-to)512-516
Number of pages5
JournalNature
Volume600
Issue number7889
DOIs
StatePublished - Dec 16 2021
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape'. Together they form a unique fingerprint.

Cite this