TY - JOUR
T1 - High-performance ferroelectric memory based on phase-separated films of polymer blends
AU - Khan, Yasser
AU - Bhansali, Unnat Sampatraj
AU - Almadhoun, Mahmoud N.
AU - Odeh, Ihab N.
AU - Cha, Dong Kyu
AU - Alshareef, Husam N.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors acknowledge the generous financial support from KAUST and Saudi Basic Industries Corporation (SABIC) Grant No. 2000000015.
PY - 2013/10/29
Y1 - 2013/10/29
N2 - High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AB - High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UR - http://hdl.handle.net/10754/563051
UR - http://doi.wiley.com/10.1002/adfm.201302056
UR - http://www.scopus.com/inward/record.url?scp=84895919955&partnerID=8YFLogxK
U2 - 10.1002/adfm.201302056
DO - 10.1002/adfm.201302056
M3 - Article
SN - 1616-301X
VL - 24
SP - 1372
EP - 1381
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 10
ER -