High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

Selma Amara, Gallo A.Torres Sevilla, Mayyada Hawsawi, Yousof Mashraei, Hanan Mohammed, Melvin E. Cruz, Yurii P. Ivanov, Samridh Jaiswal, Gerhard Jakob, Mathias Kläui, Muhammad Hussain, Jurgen Kosel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

Flexible electronics is an emerging field in many applications ranging from in vivo biomedical devices to wearable smart systems. The capability of conforming to curved surfaces opens the door to add electronic components to miniaturized instruments, where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first choice, due to their high sensitivity, low power consumption etc. MTJs are also promising candidates for non-volatile next-generation data storage media and, hence, could become central components of wearable electronic devices. In this work, a generic low-cost regenerative batch fabrication process is utilized to transform rigid MTJs on a 500 µm silicon wafer substrate into 5 µm thin, mechanically flexible silicon devices, and ensuring optimal utilization of the whole substrate. This method maintains the outstanding magnetic properties, which are only obtained by deposition of the MTJ on smooth high-quality silicon wafers. The flexible MTJs are highly reliable and resistive to mechanical stress. Bending of the MTJ stacks with a diameter as small as 500 µm is possible without compromising their performance and an endurance of over 1000 cycles without fatigue has been demonstrated. The flexible MTJs are mounted onto the tip of a cardiac catheter with 2 mm in diameter without compromising their performance. This enables the detection of magnetic fields and the angle which they are applied at with a high sensitivity of 4.93%/Oe and a low power consumption of 0.15 μW, while adding only 8 and 5 μm to the weight and diameter of the catheter, respectively.

Original languageEnglish (US)
Article number1800471
JournalAdvanced Engineering Materials
Volume20
Issue number10
DOIs
StatePublished - Oct 2018

Keywords

  • TMR sensors
  • flexible electronics
  • flexible silicon
  • magnetic tunnel junction
  • reliability
  • smart instruments
  • thin films

ASJC Scopus subject areas

  • Condensed Matter Physics
  • General Materials Science

Fingerprint

Dive into the research topics of 'High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments'. Together they form a unique fingerprint.

Cite this