High performance pMOSFETs using Si/Si1-xGex/Si quantum wells with high-k/ metal gate stacks and additive uniaxial strain for 22 nm technology node

S. Suthram*, P. Majhi, G. Sun, P. Kalra, H. R. Harris, K. J. Choi, D. Heh, J. Oh, D. Kelly, R. Choi, B. J. Cho, M. M. Hussain, C. Smith, S. Banerjee, W. Tsai, S. E. Thompson, H. H. Tseng, R. Jammy

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

19 Scopus citations

Abstract

We demonstrate for the first time that both SiGe and Ge channel with high-k/metal gate stack pMOSFETs show similar uniaxial stress enhanced drive current as Si which is expected from k.p calculations. We also demonstrate experimentally that pMOSFETs with strained quantum wells (QW) in the Si-Ge system exhibited high performance and low off-state leakage comparable to optimized gate stacks on Si. These results significantly hasten the feasibility of realizing SiGe or Ge channel pMOSFETs for 22 nm and beyond.

Original languageEnglish (US)
Article number4419049
Pages (from-to)727-730
Number of pages4
JournalTechnical Digest - International Electron Devices Meeting, IEDM
DOIs
StatePublished - 2007
Externally publishedYes
Event2007 IEEE International Electron Devices Meeting, IEDM - Washington, DC, United States
Duration: Dec 10 2007Dec 12 2007

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'High performance pMOSFETs using Si/Si1-xGex/Si quantum wells with high-k/ metal gate stacks and additive uniaxial strain for 22 nm technology node'. Together they form a unique fingerprint.

Cite this